Name: \qquad Date: \qquad

Learning Goal 8.1

Solving exponential and logarithmic equations with same base and with different bases, including base e.

More Questions - Solutions

Power Law	Product Law	Quotient Law	Change of Base
$\log _{b} x^{y}=y \log _{b} x$	$\begin{aligned} \log _{b}(x y)= & \log _{b} x \\ & +\log _{b} y \end{aligned}$	$\begin{aligned} \log _{b}\left(\frac{x}{y}\right)= & \log _{b} x \\ & -\log _{b} y \end{aligned}$	$\log _{b} x=\frac{\log _{a} x}{\log _{a} b}$

1. Solve for x. Round your answers to the nearest hundredth.
a. $\quad 2^{z}=2500$

$$
\begin{aligned}
\log \left(2^{x}\right) & =\log (2500) \\
x \log (2) & =\log (2500) \\
x & =\frac{\log (2500)}{\log (2)} \\
x & \approx 11.29
\end{aligned}
$$

b. $\quad 5^{x-3}=1700$

$$
\begin{aligned}
\log \left(5^{x-3}\right) & =\log (1700) \\
(x-3) \log (5) & =\log (1700) \\
x-3 & =\frac{\log (1700)}{\log (5)} \\
x & =\frac{\log (1700)}{\log (5)}+3 \\
x & \approx 7.62
\end{aligned}
$$

c. $8\left(3^{2 x}\right)=568$

$$
3^{2 x}=71
$$

d. $\quad 6^{3 x+1}=8^{x+3}$

$$
\log \left(3^{2 x}\right)=\log (71)
$$

$$
2 x \log (3)=\log (71)
$$

$$
2 x=\frac{\log (71)}{\log (3)}
$$

$$
x=\frac{\log (71)}{2 \log (3)}
$$

$$
x \approx 1.94
$$

$$
\begin{aligned}
\log \left(6^{3 x+1}\right) & =\log \left(8^{x+3}\right) \\
(3 x+1) \log (6) & =(x+3) \log (8) \\
3 x \log 6+\log 6 & =x \log 8+3 \log 8 \\
3 x \log 6+\log 6 & =x \log 8+\log 512 \\
3 x \log 6-x \log 8 & =\log 512-\log 6 \\
x(3 \log 6-\log 8) & =\log \left(\frac{512}{6}\right) \\
x(\log 216-\log 8) & =\log \left(\frac{256}{3}\right) \\
x \log \left(\frac{216}{8}\right) & =\log \left(\frac{256}{3}\right) \\
x \log (27) & =\log \left(\frac{256}{3}\right) \\
x & =\log \left(\frac{256}{3}\right) / \log (27) \\
x & \approx 1.35
\end{aligned}
$$

e. $\quad 4\left(7^{x+2}\right)=9^{2 x-3}$

$$
\begin{aligned}
\log \left(4\left(7^{x+2}\right)\right) & =\log \left(9^{2 x-3}\right) \\
\log (4)+\log \left(7^{x+2}\right) & =\log \left(9^{2 x-3}\right) \\
\log (4)+(x+2) \log (7) & =(2 x-3) \log (9) \\
\log (4)+x \log (7)+2 \log (7) & =2 x \log (9)-3 \log (9) \\
\log (4)+x \log (7)+\log (49) & =x \log (81)-\log (729) \\
x \log (7)-x \log (81) & =-\log (729)-\log (4)-\log (49) \\
x(\log 7-\log 81) & =\log \left(\frac{1}{729}\right)+\log \left(\frac{1}{4}\right)+\log \left(\frac{1}{49}\right) \\
x \log \left(\frac{7}{81}\right) & =\log \left(\frac{1}{729} \times \frac{1}{4} \times \frac{1}{49}\right) \\
x \log \left(\frac{7}{81}\right) & =\log \left(\frac{1}{142884}\right) \\
x & =\log \left(\frac{1}{142884}\right) / \log \left(\frac{7}{81}\right) \\
x & \approx-4.85
\end{aligned}
$$

2. Find the half - life of an isotope if 10 grams of a 150 gram sample remains after 21.9 days.

$$
\begin{array}{r}
w(t)=w_{0} \times\left(\frac{1}{2}\right)^{\frac{t}{t_{H}}} 10=150 \times\left(\frac{1}{2}\right)^{\frac{21.9}{t_{H}}} \\
\frac{10}{150}=\left(\frac{1}{2}\right)^{\frac{21.9}{t_{H}}} \\
\frac{1}{15}=\left(\frac{1}{2}\right)^{\frac{21.9}{t_{H}}} \\
\log \left(\frac{1}{15}\right)=\log \left(\left(\frac{1}{2}\right)^{\frac{21.9}{t_{H}}}\right) \\
\log \left(\frac{1}{15}\right)=\left(\frac{21.9}{t_{H}}\right) \log \left(\frac{1}{2}\right) \\
t_{H} \log \left(\frac{1}{15}\right)=21.9 \log \left(\frac{1}{2}\right) \\
21.9 \log \left(\frac{1}{2}\right) / \log \left(\frac{1}{15}\right) \\
t_{H}= \\
t_{H} \approx 5.60
\end{array}
$$

