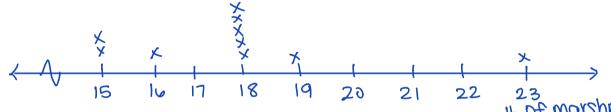
Name:	Date: _	

So far in this unit we have explored:


Today we are going to look at another way of describing dispersion, what is the spread in the data.

Let's consider the following situation:

Juliana is going into business selling bags of chocolate covered marshmallows. She contacts two different companies that are offering to do the packaging for her. She receives 10 samples from each company and counts the number of marshmallows in each bag:

Company #1	Wrap 'em Up	15	15	16	16	17	18	18	19	21	23
Company #2	Bags of Fun	15	15	16	18	18	18	18	18	19	23

1. Make a line plot of the number of marshmallows in a bag for the two companies

2. Calculate the three measures of central tendency and the range for each company

Company	Mean	Median	Mode	Range
Wrap 'em UP	17.8	17.5	15,16,18	15 - 23
Bags of	17.8	18	18	15 - 23

Based on your measures calculated above, which company is more consistent? Did any of our summary statistics capture this?

The second - mode

Standard Deviation

a measure of how consistent the dat a set is or (sigma-lowercase)

Let's calculate the standard deviation for the marshmallow packages.

144	<u>ー</u> エート	¬ 0	D (E		0
Wrap 'em up Observation	Distance from mean	7.8 distance ²	Bags of Fun Observation	Distance from mean	distance ²
15	+2.8	7.84	15	+ 2.8	7.84
15	+2.8	7.84	15	+2.8	7.84
16	+1.8	3.24	16	+1.8	3.24
16	+1.8	3.24	18	-0.2	0.04
17	+0.8	0.64	18	-0.2	0.04
18	- D.2	0.04	18	-0.2	0.04
18	-0.2	0.04	18	-0.2	0.04
19	-1.2	1.44	18	-0.2	40.0
21	-3.2	10.24	19	-1.2	1.44
23	- 5.2	27.04	23	- 5.2	27.04
Total	\mathcal{M}	61.6	Total	^	47.6

Which data was more spread out?

How does this relate to standard deviation?

bigger ⇒ more spread out: cind of take the average Standard Deviation: $\sigma = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n}}$

	×		\propto	
	Wrap 'em Up	$(x-\bar{x})^2$	Bags of Fun	$(x-\bar{x})^2$
	15	7.84	15	7.84
	15	7.84	15	7.84
	16	3.24	16	3.24
	16	3.24	18	0.04
	17	0.64	18	0.04
	18	0.04	18	0.04
	18	0.04	18	0.04
	19	1.44	18	40.0
	21	10.24	19	1.44
	23	27.04	23	27.04
$\sum x$		وا . ا وا		47.6
$\rightarrow \bar{x}$	8. ۲۱		17.8	
$\sqrt{\frac{\sum (x - \bar{x})^2}{n}}$		761.6		147.6
		=0.78		= 0.69

Assignment p. 233 #1-9, 13 Quiz Next Day!

MEan