- **19.** The world population was approximately 6 billion in 2000. Assume that the population grows at a rate of 1.3% per year.
 - a) Write an equation to represent the population of the world.
 - **b)** When will the population reach at least 10 billion?

A = A₀ (1+r)^t

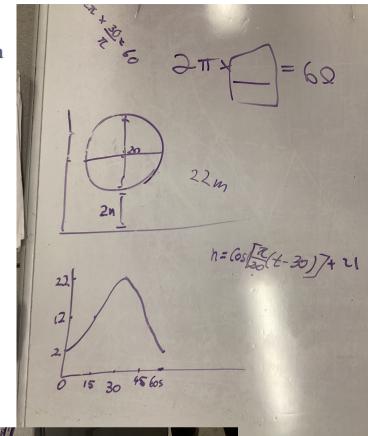
A = 6 (1+0.013)^t

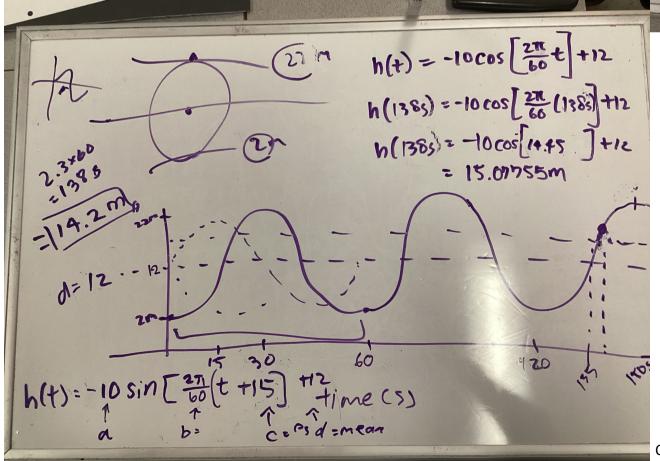
A = 6 (1.013)^t

A(t) = 6 (1.013)^t billions

b) 10 = 6 (1.013)^t

$$\frac{5}{3} = 1.013^{t}$$
 $t = \log_{1.013}(\frac{5}{3})$
= 39.5 years


a)
$$F = i(1+r)^{4/r}$$
 $F = 6.0 \times 10^{9} (1.013)^{1/1}$
 $= 6.078 \times 10^{9} \text{ people}$


b) $1.0 \times 10^{10} = 6.0 \times 10^{9} (1.013)^{1/1}$
 $1.6 = 1.013^{\pm}$
 $\log_{1.013}(1.6) = \pm \frac{\log(3/3)}{\log_{1.013}} = 39.55$

years

- 11. According to a Statistics Canada report released in 2010, Saskatoon had the fastest-growing population in Canada, with an annual growth rate of 2.77%.
 - a) If the growth rate remained constant, by what factor would the population have been multiplied after 1 year?
 - **b)** What function could be used to model this situation?
 - c) What are the domain and range of the function for this situation?
 - d) At this rate, approximately how long would it take for Saskatoon's population to grow by 25%?

- 19. A Ferris wheel with a radius of 10 m rotates once every 60 s. Passengers get on board at a point 2 m above the ground at the bottom of the Ferris wheel. A sketch for the first 150 s is shown.
- a) Write an equation to model the path of a passenger on the Ferris wheel, where the height is a function of time.
- b) If Emily is at the bottom of the Ferris wheel when it begins to move, determine her height above the ground, to the nearest tenth of a metre, when the wheel has been in motion for 2.3 min.

Quiz Next Day!