Name: \qquad Date: \qquad

Learning Goal 5.2	Use exponent laws to evaluate expression with positive and negative rational exponents.

Recall:

1. $3^{6} 3^{2}=3^{6+2}$
2. $6^{3} 6^{7} 6^{2} 6^{5}=$
$=3^{8}$
$=6^{3+7+2+5}$
3. $7^{6} 7^{3} 7=$
$=7^{6+3+1}$
$=6^{17}$
$=7^{10}$

Extend the idea to non-whole number exponents:
4. $2^{1 / 2} 2^{1 / 2}=$
5. $5^{0.25} 5^{0.25} 5^{0.25} 5^{0.25}=$
6. $11^{1 / 3} 11^{1 / 3} 11^{1 / 3}=$
$=2^{\frac{1}{2}+\frac{1}{2}}$
$=2^{1}=\left(2^{\frac{1}{2}}\right)^{2}=5^{1}$
$\left(5^{0.25}\right)^{4}=11^{1}$
$\begin{aligned}=2 & =(2 \\ & =2\end{aligned}$
$=\left(5^{4}\right)^{0.25}=11$

Take a silent moment. What do you think the fractional exponents represent?


```
If you have a fractional exponent
    - the numerator is the regular exponent
    - the denominator is the index of the radical.
```

$$
-8 \neq \frac{1}{8}
$$

Example Write each power as a radical, then simplify.

1. $1000^{\frac{1}{3}}$

$$
\begin{aligned}
& =\sqrt[3]{1000} \\
& =10
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& 0.25^{-1 / 2} \\
= & \left(\frac{1}{4}\right)^{-\frac{1}{2}} \\
= & (-8)^{1 / 3} \\
= & (4)^{\frac{1}{2}} \\
= & =\sqrt[3]{-8} \\
= & =-2
\end{aligned}
$$

4. $\left(\frac{16}{81}\right)^{-1 / 4}$

$$
\begin{aligned}
& =\left(\frac{81}{16}\right)^{\frac{1}{4}} \\
& =\sqrt[4]{\frac{81}{16}}
\end{aligned}
$$

$$
=\frac{3}{2}
$$

What if the exponent is not a unit fraction? Take a silent minute to consider.

$$
\begin{aligned}
\left(40^{2}\right)^{\frac{1}{3}} & =\sqrt[3]{40^{2}} \\
& =\sqrt[3]{1600} \\
& =\sqrt[3]{2^{6} 5^{2}}=2^{2} \sqrt[3]{5^{2}}
\end{aligned}
$$

$$
\left(40^{\frac{1}{3}}\right)^{2}=(\sqrt[3]{40})^{2}
$$

$$
=\left(\sqrt[3]{2^{3} \times 5}\right)^{2}
$$

$$
=(2 \sqrt[3]{5})^{2}=2^{2} \sqrt[3]{5^{2}}
$$

* the numerator is just a regular exponent*

Example Write each power as a radical, then simplify.

$$
1.2=\frac{6}{5}
$$

$$
\frac{75 \div 25}{100 \div 25}=\frac{3}{4}
$$

1. $0.01^{3 / 2}$
2. $(-27)^{4 / 3}$
3. $81^{-3 / 4}$
4. $0.75^{-1.2}$

$$
\begin{aligned}
& =\left(\frac{1}{100}\right)^{3 / 2} \\
& =\left(\sqrt{\frac{1}{100}}\right)^{3} \\
& =\left(\frac{1}{10}\right)^{3} \\
& =\frac{1}{1000}
\end{aligned}
$$

$$
=\left(\frac{1}{81}\right)^{3 / 4}
$$

$$
=\left(\sqrt[4]{\frac{1}{81}}\right)^{3}
$$

$$
=\left(\frac{1}{3}\right)^{3}
$$

$$
27<_{3}^{9}=\frac{3}{3}=3^{3}
$$

$$
=\frac{1^{3}}{3^{3}}=\frac{1}{27}
$$

