
Name: _____

Date: _____

Joe is collecting data of the heights of adult males and creates the frequency distribution shown on the right.

Height (inches)	Frequency
< 61	3
61 - 62 61.9	4
62 - 63 629	10
63 - 64	18
64 - 65	30
65 - 66	52
66 - 67	64
67 - 68	116
68 - 69	128
69 - 70	147
70 - 71	129
¹ 71 - 72	115
, 72 – 73	63
73 - 74	53
74 - 75	29
75 - 76	20
,76 – 77	12
77 - 78	5
78+	2
·	

2. What do you notice about the general shape?

- symmetrical.
- the most frequent volue is in the middle.

3. Joe calculated the mean of the data as 69.5 inches. Where is this on the graph

right in the middle. always.

The Normal Distribution

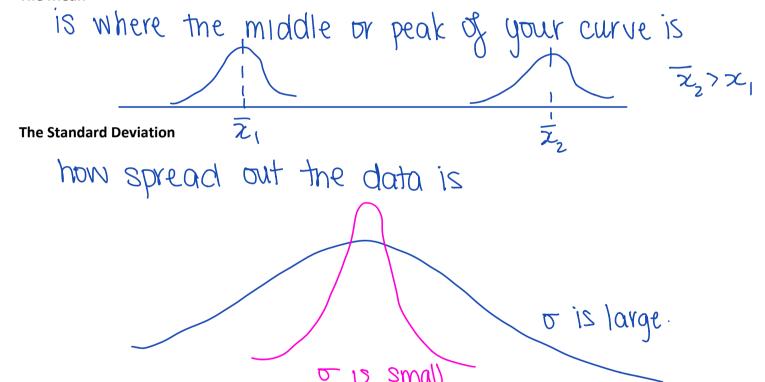
(also known as the bell curve)

Many (maybe even most) quantities will be found to be normally distributed, given enough data points.

· height

· max bench press. · Calories per day.

· shoe size.


· 50 m sprint time · baking time

· GPA

· phone time. · bronding in sizes

The mean ($\frac{1}{2}$) and the standard deviation ($\frac{1}{2}$) are what distinguish one curve from another.

The Mean

