Name:
Date: \qquad

Learning Goal 2.1	Finite limits and continuity.

More Questions - Solutions

1. What value of c will make the following function $f(x)$ continuous at 2 ?

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{x^{2}-x-2}{x-2}, & x \neq 2 \\
c, & x=2\end{cases} \\
& \begin{aligned}
\frac{x^{2}-x-2}{x-2} & =\frac{(x-2)(x+1)}{x-2} \\
& =x+1 \\
& =3 \text { when } x=2 \\
c & =3
\end{aligned}
\end{aligned}
$$

Theorem of Continuity of Function Composition

If g is continuous at a and f is continuous at $g(a)$ then the composition $f \circ g$ is continuous at a.
2. Determine where the following function are continuous.
a. $h(x)=\cos \left(x^{2}\right)$ $h(x)=f(g(x))$

$$
g(x)=x^{2}
$$

is continuous
everywhere (like all polynomials)
$f(x)=\cos x$
is also continuous everywhere (like all sinusoidal curves)

So $h(x)$ is continuous over all real numbers.
b. $\quad h(x)=\ln (1+\sin x)$

$$
h(x)=f(g(x))
$$

$g(x)=1+\sin x$ $f(x)=\ln x$ is also continuous Is only defined when
everywhere (like all $\quad x>0$ sinusoidal curves)
We can only use values where $g(x)>0$.

$$
0 \leq 1+\sin x \leq 2
$$

So we need to find the minimums of $g(x)$ and exclude those from the domain.

$$
\left\{x \left\lvert\, x \neq \frac{3 \pi}{2}+2 \pi n\right., n \in \mathbb{Z}, x \in \mathbb{R}\right\}
$$

3. Show there are solutions to the following equations in the given intervals.
a. $f(x)=\sqrt[3]{x}+x-1$
$f(0)=-1$
b. $\begin{array}{r}g(x)=x^{3}+3 x^{2}+x-2 \\ g(0)=-2 \\ g(1)=3\end{array}$

$$
f(8)=9
$$

Because there is one positive and one negative value, the function must have crossed the x - axis at least once in this interval by the intermediate value theorem.

Because there is one positive and one negative value, the function must have crossed the x-axis at least once in this interval by the intermediate value theorem.

