Name: \qquad Date: \qquad

Learning Goal 2.1	Apply the trigonometric ratios to calculate unknown lengths and angles in a right triangle.

Recap: In the following triangle label the Hypotenuse, Opposite and Adjacent sides, from the point of view of angle θ.

$\sin \theta=\underset{\text { opp }}{\text { opp }} \cos \theta=\underline{\text { adj }}$ hyp $\quad \tan \theta=\frac{\text { opp }}{\text { adj }}$
hyp
CAB
TIA
first letter : function
second letter: numerator

Standard for rounding, unless otherwise stated: third letter: denominator
Lengths 2 decimal places Angles no decimals/nearest whole $\#$

Example Solve each triangle. Express your answer to one decimal place.
\rightarrow Find all lengths and angles
a.
b.

SHH

$$
\text { 1. } \begin{aligned}
\angle D & =180-90-32 \\
\angle D & =58.0^{\circ}
\end{aligned}
$$

$$
\text { 2. }(\cos 32)^{x 9}=\left(\frac{d}{9}\right)^{x 9}
$$

$$
d=9 x \cos 32
$$

$$
=9 \times 0.848
$$

$$
=7.6
$$

3. $4 C=180-90-61.3$

$$
=28.7^{\circ}
$$

$$
\begin{aligned}
& \text { 1. } a^{2}+c^{2}=b^{2} \\
& 4.1^{2}+7.5^{2}=b^{2} \\
& 16.81+52.25=b^{2} \\
& \text { 2. } \tan A=\frac{a}{c} \\
& b= \pm 8.5 \\
& \tan A=\frac{7.5}{4.1} \\
& \sqrt{73.06}=\sqrt{b^{2}} \quad \tan ^{-1}(\tan A)=(1.8293)^{\tan ^{-1}} \\
& 4 A=61.3^{\circ}
\end{aligned}
$$

c.

2. $\tan G=\frac{q}{f}$
$f_{x}(\tan 70)=\left(\frac{21.5}{f}\right) \times f \quad h \times(\sin 70)=\left(\frac{21.5}{n}\right) \times h$

$$
\frac{f \times \tan 70}{\tan 70}=\frac{21.5}{\tan 70}
$$

$$
\frac{h \times \sin 70}{\sin 70}=\frac{21.5}{\sin 70}
$$

$$
\begin{aligned}
f & =\frac{21.5}{\tan 10} & h & =\frac{21.5}{\sin 70} \\
& =\frac{21.5}{0.839} & & =\frac{21.5}{0.9397} \\
& =25.6 & & =22.9
\end{aligned}
$$

CAL
2. $\cos k=\frac{j}{m}$
$\cos k=\frac{8.5}{12.0}$
$\cos ^{-1}(\cos k)=(0.708)^{\cos ^{-1}}$
$k k=44.9^{\circ}$
3. $4 J=180-90-44.9$
$=45.1^{\circ}$

Example A peregrine falcon has built a nest on a ledge of a building in Calgary, AB. The ledge is 34 m from the ground. Alain wants to take a photograph of the bird with his telephoto lens. He has set his camera up, waiting for the bird to return to the nest. His camera, sitting on a tripod, is 2 m from the ground. The angle of depression from the nest to Alan's camera is 28°
a. Sketch a diagram reflecting the information given above.

b. How far is the tripod and camera from the building, to the nearest tenth of a metre?

$$
\begin{aligned}
\tan N & =\frac{n}{c} & n & =32 \times \tan 62 \\
32 \times(\tan 62) & =\left(\frac{n}{32}\right) \times 32 & & =60.2
\end{aligned}
$$

The camera is 60.2 m away from the building.
c. At what angle does Plain have to set the tripod to take a picture of the nest?

$$
\begin{aligned}
\forall C & =180-90-62 \\
& =28^{\circ}
\end{aligned}
$$

The angle of the tripod will be 28°
d. If Alain's lens can focus on objects up to 75 m away, can he focus on the falcon's nest? Justify your answer.

$$
\begin{aligned}
\cos N & =\frac{c}{b} & b & =\frac{32}{\cos 62} \\
b \times(\cos 62) & =\left(\frac{32}{b}\right)^{\circ} b & & =\frac{32}{0.469} \\
\frac{b \times \cos 62}{\cos 62} & =\frac{32}{\cos 62} & & =68.2
\end{aligned}
$$

Yes he can see the falcon's nest because it is only 68.2 m from his camera.

Example An auger is used to move grain from a combine to a truck that will transport the grain to a bin for storage. The angle of elevation of the auger is 25° and the spout makes a right angle with the falling grain. If the top of the spout of the auger is 78 in . above the truck box, what is the length of the auger, to the nearest

$$
\begin{gathered}
\text { TVA } \\
\tan C=\frac{C}{t} \\
t \times\left(\tan 25^{\circ}\right)=\left(\frac{78}{t}\right) \times t
\end{gathered}
$$

The length of the

$$
\begin{aligned}
& \text { he length of the } \\
& \text { auger is } 167 \text { inches } \begin{aligned}
\operatorname{tx} \tan 25^{\circ} & =78 \\
\tan 25 & \tan 25 \\
t & =\frac{78}{0.466} \\
t & =167.3
\end{aligned}
\end{aligned}
$$

