\qquad Date: \qquad

Exponential Growth and Decay
Let $y=f(t)$ represents a population size at time t. THere's only one possible function for titis. $f(t)=e^{k t}$

$$
f^{\prime}(t)=k \times f(t)
$$

$$
k>0
$$

$e^{k t}$ (raise a \# to $a+v e$ exp)
GROWTH

$$
\begin{aligned}
& e^{-k t} \\
= & \frac{1}{e^{k t}} \text { Decay }
\end{aligned}
$$

IC
Example Use the fact that the world population was 2560 million in 1950 and 3040 million in 1960 to model the population of the world in the second half of the $20^{\text {th }}$ century (assuming the growth rate is proportional to the population size). What is the relative growth rate? Use the model to estimate the world population in 1993 and to predict the population in the year 2023.

$$
\frac{d P}{d t}=K P
$$

$$
\ln x=\log _{e} x
$$

THe GROWH Rate is 1.72 per year.

$$
1993
$$

$$
t=43
$$

$$
\begin{aligned}
P(43) & =2560 e^{0.017(43)} \\
& =5.36 \text { BillION }
\end{aligned}
$$

2023

$$
t=73
$$

Assignment

$$
t=0
$$

$$
1950
$$

$$
P(t)=P(0) e^{k t}
$$

$$
=9.0 \text { BILLION }_{\# 1-15,19}
$$

$$
\begin{aligned}
& 1960 \\
& t=10
\end{aligned} P(10)=\frac{2560 e^{k(10)}}{2560}=\frac{3040}{2560}
$$

$$
\begin{aligned}
& 25600 \\
& \ln \left(e^{100}\right)=\left(\frac{190}{\ln }(16)\right.
\end{aligned}
$$

$$
\begin{aligned}
& 10 k=\ln \left(\frac{19}{16}\right) \\
& k=\frac{\ln \left(\frac{19}{16}\right)}{10}
\end{aligned}
$$

$$
=0.017 \text { Quiz Next Dy! }
$$

$$
A=A_{0}(r)^{k / t}
$$

$$
K \text { is a GRowtit Rate. }
$$

Example The half - life of radium -226 is 1590 years.
a. A sample of radium-226has a mass of 100 mg . Find a formula for the mass of the sample that remains after t years.

$$
m(t)=100 e^{k t}
$$

$$
\begin{gathered}
m(t)=100 e \\
m(1590)=100 e^{k(1590)}=50
\end{gathered}
$$

$$
\ln \left(e^{15901}\right)=(0.5)
$$

$\operatorname{tln}(0.5) / 1590 \quad 1590 k=\ln (0.5)$

$$
m(t)=100 e^{0}
$$

b. Find the mass after 1000 years correct to the nearest milligram. 1590

$$
k=\frac{\ln (0.5)}{1590} \doteq-0.00044
$$

$$
\begin{aligned}
m(1000) & =100 e^{1000 l} \\
& =65 \mathrm{mg}
\end{aligned}
$$

c. When will the mass be reduced to 30 mg ?

$$
\begin{aligned}
m(t)=100 e^{t \ln (0.5) / 1590} & =30 \\
\ln \left(e^{t \ln (0.5) / 1590)}\right) & =(0.3) \\
\frac{t \ln (0.5)}{1590} & =\ln (0.3) \\
t & =\frac{1590 \ln (0.3)}{\ln (0.5)}
\end{aligned}
$$

Example If $\$ 1000$ is invested, how much will the investment be worth after 3 years at 6% interest if
a. It is compounded annually? $n=1$

$$
\begin{aligned}
A(3) & =1000\left(1+\frac{0.06}{1}\right)^{1 \times 3} \\
& =1000(1.06)^{3} \\
& =1191.02
\end{aligned}
$$

b. It is compounded monthly? $n=12$

$$
\begin{aligned}
A(3) & =1000\left(1+\frac{0.06}{12}\right)^{12 \times 3} \\
& =1000(1.005)^{36}=\$ 1196.68
\end{aligned}
$$

c. It is compounded daily? $n=365$

$$
A(3)=1000\left(1+\frac{0.06}{365}\right)^{365 \times 3}
$$

d. It is compounded continuously?

$$
=1000(1.00016)^{1095}
$$

$$
\begin{aligned}
A(3) & =1000(e)^{0.06 \times 3} \\
& =\$ 1197.22
\end{aligned}
$$

