\qquad Date: \qquad

Learning Goal 3.2	Applying derivatives to trigonometric and exponential functions.

axial coordinates.

Quick recap from Limits

$$
\lim _{x \rightarrow 0} \sin x=0 \quad \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0
$$

a. $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 4 x}$

$$
\text { b. } \lim _{x \rightarrow 0} \frac{\tan 2 x}{x}
$$

$$
\begin{aligned}
& \text { WHy is } \frac{d}{d x}(\sin x)=\cos x ? \quad \frac{d}{d x}(\sin x)=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& \begin{aligned}
\frac{d}{d x}(\sin x) & =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\sin x \cosh h+\cos x \sin h)-\sin x}{h}
\end{aligned} \\
& \begin{array}{l}
=\lim _{h \rightarrow 0} \frac{(\sin x \cos h+\cos x \sin h)-\sin x}{h} \\
=\lim _{h \rightarrow 0} \sin x\left(\frac{\cosh -1}{h}\right)+\lim _{h \rightarrow 0} \frac{\cos x \sin h}{h}
\end{array} \\
& =\sin x \lim _{h \rightarrow 0} \frac{\cosh -1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h}
\end{aligned}
$$

$$
=\cos x
$$

The Derivative of Sine and Cosine Graphically

Example Use the quotient rule to find the derivative of $y=\tan x .=\frac{\sin x}{\cos x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\cos x(\sin x)^{\prime}-\sin x(\cos x)^{-\sin x}}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x}
\end{aligned}
$$

