Name:	Date:	
Name.	Date.	

Learning Goal 3.3	Solving equations algebraically and graphically.
-------------------	--

More Questions - Solutions

1. Consider the equation $f(x) = x^3 + 4x^2 + 5x + 2$.

Degree	Leading Coefficient	Constant	Domain	y — intercept	Number of x — intercepts
Three	1	2	$\{x x\in\mathbb{R}\}$	y = 2 (0, 2)	1, 2 or 3

a. What is the end behaviour of the function?

$$\lim_{x \to -\infty} f(x) = -\infty \qquad \qquad \lim_{x \to \infty} f(x) = \infty$$

b. Factor the equation.

There are very few options here: ± 1 and ± 2 . So let's try x-2 first.

$$f(2) = (2)^{3} + 4(2)^{2} + 5(2) + 2$$

$$= 8 + 16 + 10 + 2$$

$$= 36$$

$$\neq 0$$

$$f(-2) = (-2)^{3} + 4(-2)^{2} + 5(-2) + 2$$

$$= -8 + 16 - 10 + 2$$

$$= 0$$

$$f(x) = x^{3} + 4x^{2} + 5x + 2$$

$$= (x+2)(x^{2} + 2x + 1)$$

$$= (x+2)(x+1)(x+1)$$

$$= (x+2)(x+1)^{2}$$

c. Find the solutions or roots of the equation. What multiplicity does each have?

$$(x+2)(x+1)^2 = 0$$

$$x = -2, -1$$

x = -2 has multiplicity one, and x = -1 has multiplicity two.

2. Consider the equation $g(x) = 10x^3 + 19x^2 + 2x - 7$.

Degree	Leading Coefficient	Constant	Domain	y — intercept	Number of x — intercepts
Three	10	- 7	$\{x x\in\mathbb{R}\}$	y = -7 $(0, -7)$	1, 2 or 3

d. What is the end behaviour of the function?

$$\lim_{x \to -\infty} f(x) = -\infty \qquad \qquad \lim_{x \to \infty} f(x) = \infty$$

e. Factor the equation.

There are **many** options here, but let's focus on the constant term: ± 1 and ± 7 . So let's try x-1 first.

f. Find the solutions or roots of the equation. What multiplicity does each have?

$$(x+1)(2x-1)(10x+7) = 0$$
$$x = -1, \frac{1}{2}, -\frac{7}{10}$$

All the roots have multiplicity one.