\qquad

Learning Goal 3.3	Creating confidence in (baby) word problems.

There are two kinds of rate of change that we use to solve application problems:

1. Average rate of CHaNGe 2. Instantaneous Rate of

$$
\begin{array}{rlr}
\text { - secant line } & \text { CHaNGe. } \\
\text { between } 2 \text { points. } & \text { - tangent line at } \\
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} & \text { the point of interest. } \\
\left(=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) & \begin{array}{ll}
d y & =\lim _{1} \rightarrow x_{0} \frac{\Delta y}{\Delta x} . \\
&
\end{array} & f^{\prime}\left(x_{0}\right)
\end{array}
$$

Most Common Physical Example

$$
\begin{aligned}
& \text { distance / displacement }=d(t) \\
& \text { velocity }=v(t)=d^{\prime}(t) \\
& \text { acceleration }=a(t)=v^{\prime}(t)=d^{\prime \prime}(t) \\
& \text { jerk }=j(t)=a^{\prime}(t)=v^{\prime \prime}(t)=d^{\prime \prime \prime}(t)
\end{aligned}
$$

Example The position of a particle is given by the equation d $(t)=t^{3}-6 t^{2}+9 t$
a. What is the velocity of the particle at any time t ?

$$
\begin{aligned}
v(t) & =d^{\prime}(t) \\
& =3 t^{2}-12 t+9
\end{aligned}
$$

b. What is the velocity of the particle after 2 seconds? After 4 seconds?

$$
\begin{aligned}
v(2) & =3(2)^{2}-12(2)+9 \\
& =12-24+9=-3 \text { units } / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
V(4) & =3(4)^{2}-12(4)+9 \\
& =48-48+9=9 \text { units } / \mathrm{sec}
\end{aligned}
$$

use the distance function!
c. What is the average velocity of the particle
d. When is the particle at rest? from 2 seconds to 4 seconds?

$$
=\left((4)^{3}-6(4)^{2}+9(4)\right)-\left((2)^{3}-6(2)^{2}+9(2)\right)
$$

$$
\begin{aligned}
& d^{\prime}(t)=0 \\
& 3 t^{2}-12 t+9=0 \\
& 3\left(t^{2}-4 t+3\right)=0 \\
& 3(t-3)(t-1)=0 \\
& t=3 \sec \quad t=1 \sec
\end{aligned}
$$

$$
\begin{aligned}
\frac{\Delta d}{\Delta t} & =\frac{d(4)-d(2)}{4-2} \\
& =\frac{\left.(14)^{3}-6(4)^{2}+9(4)\right)-\left((2)^{3}-6(\right.}{2} \\
& =\frac{4-2}{2}=\frac{2}{2}=1 \text { units } / \mathrm{sec}
\end{aligned}
$$

e. When is the particle moving forward?
f. Find the total distance traveled by the

$$
d^{\prime}(t)>0
$$

$$
t<1 \text { aND } t>3
$$

$$
v(t)=3 t^{2}-12 t+9
$$

g. Find the acceleration at time t and after 4 seconds.

$$
\begin{aligned}
v^{\prime}(t) & =b t-12 \\
& =a(t) \\
a(4) & =6(4)-12 \\
& =12 \text { units } / \mathrm{sec}^{2}
\end{aligned}
$$

h. When is the particle speeding up? When is it slowing down?

$$
G a(t)>0
$$

$$
\begin{array}{rlr}
G a(t)<0 & \\
a(t)>0 \quad 6 t-12 & >0 \\
6 t & >12 & (2, \infty) \\
t & >2 & \\
a(t)<0 \quad \begin{aligned}
G t-12 & <0 \\
6 t & <12 \quad[0,2) \\
t & <2 \quad \text { question }
\end{aligned}
\end{array}
$$

