Name: \qquad Date: \qquad

Recall the Product of Powers rule to simplify the following expressions.

1. $3^{6} 3^{2}$
2. $6^{7} 6^{2}$
$=3^{6+2}$
$=6^{7+2}$
3. $7^{6} 7^{1}$
$=7^{6+1}$
$=3^{8}$
$=6^{9}$
$=77$

And the Quotient of Powers rule:
4. $3^{6} \div 3^{2}$
5. $\quad \frac{6^{2}}{6^{7}}=$
6. $7 \div 7^{6}$
$=\frac{3 \times 3 \times 3 \times 3 \times 3 \times 3}{3 \times 3}$
$=3^{4}$

$$
\begin{aligned}
& =6^{2-7} \\
& =6^{-5}
\end{aligned}
$$

Take a (silent) minute. What do you think the negative exponents represent? the reciprocal of the base raised to the positive of the exponent.

When x is any non-zero number and n is a rational number,

$$
x^{-n}=\frac{1}{x^{n}}, x \neq 0
$$

$$
5 \div \frac{15}{10}=\frac{3}{2}
$$

Example Evaluate the following expressions without a calculator. Leave your answers as fractions.
1.

$$
\text { 1. } \begin{aligned}
\frac{7^{-2}}{1} & =\left(\frac{1}{7}\right)^{2} \\
& =\frac{1}{7^{2}}=\frac{1}{49}
\end{aligned}
$$

3. $\left(-\frac{3}{4}\right)^{-3}=\left(-\frac{4}{3}\right)^{3}$

$$
=-\frac{64}{27}
$$

$$
\begin{aligned}
& \text { 2. }(-1.5)^{-3}=\left(-\frac{3}{2}\right)^{-3} \\
& \left(-\frac{1}{1.5}\right)^{3}=\left(-\frac{2}{3}\right)^{3}=\frac{(-2)^{3}}{3^{3}} \\
& \text { 4. }\left(\frac{10}{3}\right)^{-2} \\
& =\frac{-\frac{8}{27}}{100} \\
& =\left(\frac{3}{10}\right)^{2}
\end{aligned}
$$

What if the exponent is not in integer? Take a minute (silently) to consider.

Example Evaluate the following expressions, without using a calculator.

$$
\text { 1. } \begin{aligned}
& 16^{0^{5 / 4}} \\
&=\left(\frac{1}{16}\right)^{5 / 4} \\
&=\left(\sqrt[4]{\frac{1}{16}}\right)^{5} \\
&=\left(\frac{1}{2}\right)^{5}=\frac{1}{2^{5}}=\frac{1}{32}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& \left(\frac{25}{36}\right)^{-1 / 2} \\
= & \left(\frac{36}{25}\right)^{\frac{1}{2}} \\
= & \sqrt{\frac{36}{25}} \\
= & \frac{6}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } \begin{aligned}
&\left(\frac{9}{16}\right)^{-3 / 2} \\
&=\frac{1000}{27}=\frac{10.008)^{-4 / 3}}{}=\left(\frac{-8}{1000}\right)^{\frac{-4}{3}} \\
&=\left(\frac{-1000}{8}\right)^{\frac{4}{3}} \\
&=\left(\frac{3}{\frac{-1000}{8}}\right)^{4} \\
&=\left(\frac{-10}{2}\right)^{4} \\
&=5^{4}
\end{aligned}
\end{aligned}
$$

Example Paleontologists use measurements from fossilized dinosaur tracks and the formula

$$
v=0.155 s^{5 / 3} f^{-7 / 6}
$$

to estimate the speed at which the dinosaur travelled. In the formula, v is the speed in metres per second, s is the distance between successive footprints of the same foot, and f is the foot length in metres. If $s=1.5 \mathrm{~m}$ and $f=0.3 \mathrm{~m}$, find the estimate the speed of the dinosaur.

