Name: _____

Date:

Learning Goal 5.3

I can multiply and divide polynomials.

Recall the area model for multiplying and dividing polynomials by a constant.

$$-3(2x^{2}-3x+2)$$

$$= -6x^{2}+9x-4$$

$$\uparrow$$
area

$$\frac{6x^2 - 9x + 6}{23}$$
one side length
$$= -2x^2 + 3x - 2$$
second Side length

The same rules apply if that constant is replaced with a monomial (a the term polynomia)).

Example Expand and simplify, if possible.

a.
$$2x(4x)$$

$$= 2 \cdot 4 \cdot x \cdot x$$

$$= 8x^{2}$$
b. $2x(4x-3)$
Avea = 8x²

$$4x$$

$$= (2.4.x.x) - (2.3.x)$$

$$= 8x^2 - 6x$$

$$2x = 8x^2 - 6x$$

$$4x - 3$$

c.
$$2x(x^2 + 4x - 3)$$

= $(2 \cdot x \cdot x^2) + (2 \cdot 4 \cdot x \cdot x) - (2 \cdot 3 \cdot x)$
= $2x^3 + 8x^2 - 6x$

Example Simplify where possible.

a.
$$\frac{6x^2}{3x}$$

$$= 2x^{2-1}$$

b.
$$\frac{6x^{2} + 3x}{3x^{2}} = \frac{6x^{2}}{3x} + \frac{3x}{3x}$$

$$= 2x^{2-1} + |x|^{-1}$$

$$= 2x + |x|^{2}$$

$$= 2x + |x|^{2}$$

c.
$$\frac{6x^{2} + 3x - 12x^{3}}{3x} = \frac{6x^{2}}{3x} + \frac{3x}{3x} - \frac{12x^{3}}{3x}$$

$$= 2x^{2-1} + 1x^{1-1} - 4x^{3-1}$$

$$= 2x + 1x^{2-1} + 4x^{2}$$

$$= 2x + 1 - 4x^{2}$$

A harder (or extending) problem would be

divide by GCF and rewrite Find the greatest common factor of the following expression, then factor the expression. The expression. as a product.

$$GCF(12x^2, 4x)$$
= 4x

$$\frac{12x^2 - 4x}{4x}$$

$$= \frac{12x^2}{4x} - \frac{4x}{4x}$$

$$= 3x^{2-1} - 1x^{1-1}$$

$$= 3x - 1x^{\circ}$$

$$= 3x - 1$$

$$12x^2-4x$$

$$= 4x(3x-1)$$

Assignment

p. 255 # 4 - 12, 16, 19 - 22

Quiz Next Day!