Name: \qquad Date: \qquad

> | Learning Goal 7.1 | $\begin{array}{l}\text { Applying one or more transformations to an exponential } \\ \text { function, including translations, stretches and reflections. }\end{array}$ |
| :--- | :--- |

An exponential function has an equation of the form $f(x)=A b^{x}$, where A and b are constants and $b>0$.
Example The population of a bacterial culture triples every hour. When the scientist observed the culture, it had already been growing for some time. She developed the equation for the population, P, after t hours as $P=700(3)^{t}$, based on $t=0$ representing the time she started her measurements. How many bacterial cells were there 2 hours before she started measuring?
$\rightarrow t=-2$
$\begin{aligned} 700 & \times 3^{0} \\ & =700 \times 1 \\ & =700\end{aligned}$

Population

I showing the population is tripling

$$
\begin{aligned}
P & =700 \times 3^{-2} \\
& =700 \times \frac{1}{9} \\
& =78 \text { Bacteria }
\end{aligned}
$$

Example The half-life of a radioactive element can be modelled by

$$
M=M_{0}\left(\frac{1}{32}\right)^{t / 45}
$$

where M_{0} is the initial mass of the element; t is the elapsed time, in hours and M is the mass that remains after time t. Determine the half-life of the element.

~~~~

乞 how LONG it takes for HalF the mass to .. Disappear?
a 2 !

$$
\begin{aligned}
& =\left(\frac{1}{2^{5}}\right)^{t / 45} \\
& =\left(\frac{1}{2}\right)^{5 \times \frac{t}{45}}
\end{aligned}
$$

Example Cobalt-60, which has a half-life of 5.3 years is used in medical radiology. A sample of 60 mg of the material is present today.
a. Write an equation to relate the amount of colbalt-60 remaining and the number of half-life periods.

b. What amount will be present in 10.6 years?

$$
\begin{aligned}
& \frac{10.6}{5.3}=2 \Rightarrow 2 \text { HalF lives Have BeeN } \\
& \text { CoMPleted. } \\
& A=60\left(\frac{1}{2}\right)^{2} \\
&=60\left(\frac{1}{4}\right)=25 \mathrm{mg}
\end{aligned}
$$

c. How many years will it take for the amount of cobalt- 60 to decay to 12.5% of its initial amount?

$$
\begin{aligned}
12.52 & =\frac{12.5}{100}=\frac{125}{1000}=\frac{5}{40}=\frac{1}{8} \\
& \frac{1}{8} \text { of } 60=7.5 \mathrm{mg} \\
\frac{7.5}{60} & =\frac{60}{60}\left(\frac{1}{2}\right)^{t / 5.3} \\
\frac{1}{8} & =\left(\frac{1}{2}\right)^{t / 5.3} \\
\left(\frac{1}{2}\right)^{3} & =\left(\frac{1}{2}\right)^{t / 5.3} \\
3 & =\frac{t}{5.3}
\end{aligned}
$$

