Name: \qquad Date: \qquad
Learning Goal 9.2 Solving quadratic inequalities.

1. Graph $y>(x-4)^{2}-2$ and determine whether the point $(2,1)$ is a solution to the inequality.

The vertex of this parabola is at $(4,-2)$ and is smiling ()

Because there is no expansion/contraction of the parabola, we can move from the vertex in our normal way:

Right/Left	Up
1	1
2	4
3	9

Or create a table of values, placing the vertex in the middle of the table:

x	y
2	2
3	-1
4	-2
5	-1
6	2

We use a dashed line because we are graphing a strict inequality.
You have a choice of test point. Either use the one that is in the question, or use $(0,0)$.

$(2,1)$	$(0,0)$
$y>(x-4)^{2}-2$	$y>(x-4)^{2}-2$
$1>(2-4)^{2}-2$	$0>(0-4)^{2}-2$
$1>(-2)^{2}-2$	$0>(-4)^{2}-2$
$1>4-2$	$0>16-2$
$1>2$	$0>14$

Both are false and lie outside the parabola, so the inside region is shaded.
2. Graph $y \leq-x^{2}+2 x+4$.

Complete the square!

$$
\begin{gathered}
y \leq-x^{2}+2 x+4 \\
y \leq-\left(x^{2}-2 x\right)+4 \\
y \leq-\left(x^{2}-2 x+1-1\right)+4 \\
y \leq-\left(x^{2}-2 x+1\right)+1+4 \\
y \leq-(x-1)^{2}+1+4 \\
y \leq-(x-1)^{2}+5
\end{gathered}
$$

The vertex of this parabola is at $(1,5)$ and is frowning $\%$

Because there is no expansion/contraction of the parabola, we can move from the vertex in our normal way:

Right/Left	Down
1	1
2	4
3	9

Or create a table of values, placing the vertex in the middle of the table:

x	y
-1	1
0	4
1	5
2	4
3	1

We use a solid line because we are graphing an inequality, and the simplest test point to use is $(0,0)$

$(0,0)$
$y \leq-x^{2}+2 x+4$
$0 \leq-(0)^{2}+2(0)+4$
$0 \leq 0+0+4$
$0>4$

It is true and inside the parabola, so the inside region is shaded.

