Name:		
i varric.		

Unit 1 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Learning Cool 1 1	Given a polynomial expression, identify the GCF and use it to	
Learning Goal 1.1	find factored form.	

Developing		
Write each for the following numbers as a product		
of primes and then find the Greatest Common	the prime factors to justify whether each is a perfect	
Factor (GCF) and Lowest Common Multiple (LCM).	square, perfect cube, neither or both.	
18, 54	1728	
22, 46	2025	
15, 36	5556	
12, 40	4096	
Developing		
Identify the Greatest Common Factor (GCF) of the	For each arrangement of algebra tiles, write the	
following terms:	polynomial they represent and identify its factors.	
1. 4 <i>x</i> , 70	2.	
3. $12ab^2$, $36a^2b$	4.	
5. $9mn, 33m^2n^3$	6.	
7. $15x^4y$, $25x^3y^3$	8.	

Proficient			
1. For each of the following polynomials, identify the GCF and then use it to factor the polynomial.			
a. $12ab^2 + 36a^2b$	b. $4x - 70$		
c. $9mn - 33m^2n^3$	d. $34 - 8g$		
e. 6 + 24 <i>k</i>	f. $25x^3y^3 - 15x^4y$		
g. $q^5 - q^2$	h. $162v^4w^2 - 36v^2w^4$		

Name:	 Date:	

Unit 1 Review

Extending

- 1. For each of the following polynomials, identify the GCF and then use it to factor the polynomial.
 - a. $26xyz + 4x^2yz^2 8z$
 - b. $78a^3bc^6 312ab^2c^3 + 507a^5bc^3$
 - c. $405f^2g^2h^2 90fg^2h^3 + 225f^3g^4h^2$
 - d. $512 m^5 n^4 p^2 + 208 m^2 n^4 p^5 416 m^3 n^3 p^3$

Extending

- 1. Gillian says that she knows that 61 is a prime number because she tried dividing 61 by all the natural numbers up to and including 7, and none of them was a factor. Do you agree with Gillian? Explain.
- 2. A bar of soap has the shape of a rectangular prism that measures 10cm by 6 cm by 3 cm. What is the edge length of the smallest cube that could be filled with these soap bars?
- 3. A cube has a volume of 2197 m³. Its surface is to be painted. Each can of paint covers about 40 m². How many cans of paint are needed? Justify your answer.
- 4. Suppose n is an integer. Is $n^2 n$ always an integer? Justify your answer.

Name:		
ivallic.		

Unit 1 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Learning Goal 1.2	Factor trinomials of the form $ax^2 + bx + c$.
-------------------	---

Developing			
Factor the following trinomials into a product of binomials.			
1. $x^2 + 4x + 4$	2. $m^2 + 14m + 24$		
3. $a^2 + 8a + 12$	4. $b^2 + 7b + 12$		
5. $c^2 + 13c + 12$	6. $d^2 + 8d + 15$		
7. $f^2 + 9f + 18$	8. $g^2 + 9g + 20$		
9. $h^2 + 7h + 6$	10. $k^2 + 5k + 4$		
11. $a^2 + 12a + 36$	12. $k^2 + 19k + 18$		
Write the area statement shown by the algebra tiles as both a trinomial and a product of 2 binomials.			
1.	3.		

Proficient		
Factor the following trinomials into a prod	duct of binomials.	
1. $z^2 + z - 6$	2. $b^2 - 7b + 12$	
3. $x^2 - 7x - 18$	4. $p^2 - 5p - 14$	
5. $m^2 - 9m + 8$	6. $q^2 - 16q + 63$	
7. $24n - n^2 - 25$	8. $a^2 + 11a - 80$	
9. $20 + 8n - n^2$	10. $11p - p^2 - 24$	
Factor the following polynomials into a pr	oduct of binomials.	
1. $4g^2 + 11g + 6$	$2. \ \ 36x^2 + 12x + 1$	
3. $6m^2 - 7m - 10$	4. $16 - 56z + 49z^2$	
5. $8p^2 - 18p - 5$	6. $81m^2 - 49$	
7. $3n^2 - 8n + 4$	8. $49a^2 - 100$	
9. $6y^2 + 5y - 6$	10. $1 + 2b + b^2$	
11. $4a^2 - 17a + 4$	12. $9 - r^2$	
13. $3r^2 - 2r - 5$	14. $k^4 - 100$	
15. $5x^2 + 19x + 12$	16. $4t^2 - 4t + 1$	
Factor the following binomials.		
1. $x^2 - 25$	2. $a^4 - 4$	
3. $81 - a^2$	4. $100 - b^6$	
5. $169 - q^{10}$	6. $m^2 - 49$	
7. $144 - n^8$	8. $h^{20}-4$	

Date: _____

Unit 1 Review

Extending			
Without a calculator, what values of α could you use to complete the trinomial (note that α can be either a			
positive or a negative value).			
1. $x^2 + ax + 18$	2. $y^2 + ay + 24$		
3. $m^2 + am - 16$	4. $n^2 + an - 20$		
Factor the following trinomials into a product of binomials.			
1. $24h^2 - 20h - 24$	2. $162v^4 - 2w^4$		
3. $10x^2 + 80x + 120$	4. $4y^2 - 20y - 56$		
5. $-3m^2 - 18m - 24$	6. $-5n^2 + 40n - 35$		
7. $21 + 66k + 9k^2$	8. $10n^2 + 100n + 250$		
9. $2x^2 + 5xy + 2y^2$	$10.\ 10p^3 - 1960p$		
$11.16b^2+60b-100$	$12.343b^2 - 7b^4$		
$13. 4b^2 - 35ab + 49a^2$	$14.98n^2-200$		
$15.7q^3r^2 + 53q^2r^2 + 28qr^2$	$16.81x^4 - 900x^2$		
$17.9 - 3p - 2p^2$	$18.\ 100m^2 + 180m + 81$		
$19. \ 2w^2v^2 + 11wv + 5$	$20.400v^2w^4 - 36v^4$		
Factor the following binomials.			
1. $4m^2 - 25$	2. $125 - 5r^2$		
3. $121p^6 - 25q^4$	4. $4z^2 - 64$		
5. $900a^2 - 81$	6. $9s^8 - 4t^2$		

Extending

1. Find all the trinomials that begin with $9m^2$, end with +16, and can be factored.