Name:

Date: _____

Unit 1 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Learning Cool 1 1	Given a polynomial expression, identify the GCF and use it to
Learning Goal 1.1	find factored form.

Developing				
Write each for the following numbers as a produ	Prime factor each of the following numbers and use			
of primes and then find the Greatest Common	the prime factors to justify whether e	the prime factors to justify whether each is a perfect		
Factor (GCF) and Lowest Common Multiple (LCM	square, perfect cube, neither or both	square, perfect cube, neither or both.		
18, 54	1728			
GCF(18, 54) = 18 LCM(18, 54) = 54	Perfect Cube			
22, 46	2025			
GCF(22, 46) = 2 LCM(22, 46) = 506	Perfect Square			
15, 36	5556			
GCF(15, 36) = 3 LCM(15, 36) = 180	Neither			
12, 40	4096			
GCF(12, 40) = 4 LCM(12, 40) = 120	Perfect Square, Perfect Cube			
I	veloping			
Identify the Greatest Common Factor (GCF) of	r each arrangement of algebra tiles, write	e the		
the following terms:	lynomial they represent and identify its f	actors.		
1. $4x,70$ $GCF(4x,70) = 2$	$2. \ 3x + 12 = 3(x+4)$			
3. $12ab^2, 36a^2b$ $GCF(12ab^2, 36a^2b) = 12ab$	4. $6x + 9 = 3(2x + 3)$			
5. $9mn, 33m^2n^3$ $GCF(9mn, 33m^2n^3) = 3mn$	6. $4x + 12 = 2(2x + 6)$			
7. $15x^4y, 25x^3y^3$ $GCF(15x^4y, 25x^3y^3) = 5x^3y$	$8. \ 4x + 12 = 4(x+3)$			

Proficient		
1. For each of the following polynomials, identify the GCF and then use it to factor the polynomial.		
a. $12ab^2 + 36a^2b = 12ab(b+3a)$	b. $4x - 70 = 2(2x - 35)$	
c. $9mn - 33m^2n^3 = 3mn(3 - 11mn^2)$	d. $34 - 8g = 2(17 - 4g)$	
e. $6 + 24k = 6(1 + 4k)$	f. $25x^3y^3 - 15x^4y = 5x^3y(5y^2 - 3x)$	
g. $q^5 - q^2 = q^2(q^3 - 1)$	h. $162v^4w^2 - 36v^2w^4 = 18v^2w^2(9v^4 - 2w^2)$	

Name:	Date:

Unit 1 Review

Extending

- 1. For each of the following polynomials, identify the GCF and then use it to factor the polynomial.
 - a. $26xyz + 4x^2yz^2 8z = 2z(13xy + 2x^2yz 4)$
 - b. $78a^3bc^6 312ab^2c^3 + 507a^5bc^3 = 39abc^3(2a^2c^3 8b + 13a^4)$
 - c. $405f^2g^2h^2 90fg^2h^3 + 225f^3g^4h^2 = 45fg^2h^2(9f 2h + 5f^2g^2)$
 - d. $512 m^5 n^4 p^2 + 208 m^2 n^4 p^5 416 m^3 n^3 p^3 = 16 m^2 n^3 p^2 (32 m^3 n + 13 n p^3 26 m p)$

Extending

1. Gillian says that she knows that 61 is a prime number because she tried dividing 61 by all the natural numbers up to and including 7, and none of them was a factor. Do you agree with Gillian? Explain.

Nο

- 2. A bar of soap has the shape of a rectangular prism that measures 10cm by 6 cm by 3 cm. What is the edge length of the smallest cube that could be filled with these soap bars? 30 cm
- 3. A cube has a volume of 2197 m³. Its surface is to be painted. Each can of paint covers about 40 m². How many cans of paint are needed? Justify your answer.

26 cans

4. Suppose n is an integer. Is $n^2 - n$ always an integer? Justify your answer.

Yes

Name:

Date:

Unit 1 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Learning Goal 1.2 Factor trinomials of the form $ax^2 + bx + c$.

Developing		
Factor the following trinomials into a product of binomials.		
1. $x^2 + 4x + 4 = (x+2)^2$	2. $m^2 + 14m + 24 = (m+12)(m+2)$	
3. $a^2 + 8a + 12 = (a+6)(a+2)$	4. $b^2 + 7b + 12 = (b+3)(b+4)$	
5. $c^2 + 13c + 12 = (c + 12)(c + 1)$	6. $d^2 + 8d + 15 = (d+5)(d+3)$	
7. $f^2 + 9f + 18 = (f+6)(f+3)$	8. $g^2 + 9g + 20 = (g+5)(g+4)$	
9. $h^2 + 7h + 6 = (h+6)(h+1)$	10. $k^2 + 5k + 4 = (k+4)(k+1)$	
$11. a^2 + 12a + 36 = (a+6)^2$	12. $k^2 + 19k + 18 = (k+18)(k+1)$	

Write the area statement shown by the algebra tiles as both a trinomial and a product of 2 binomials.

1.
$$x^2 + 12x + 20$$

= $(x + 2)(x + 10)$

5. $169 - q^{10} = (13 - q^5)(13 + q^5)$

Profi	cient	
Factor the following trinomials into a product of binomials.		
1. $z^2 + z - 6 = (z+3)(z-2)$	2. $b^2 - 7b + 12 = (b - 3)(b - 4)$	
3. $x^2 - 7x - 18 = (x - 9)(x + 2)$	4. $p^2 - 5p - 14 = (p - 7)(p + 2)$	
5. $m^2 - 9m + 8 = (m - 8)(m - 1)$	6. $q^2 - 16q + 63 = (q - 7)(q - 9)$	
7. $24n - n^2 - 25 = (25 - n)(n + 1)$	8. $a^2 + 11a - 80 = (a + 16)(a - 5)$	
9. $20 + 8n - n^2 = (10 - n)(n + 2)$	10. $11p - p^2 - 24 = (8 - p)(p - 3)$	
Factor the following polynomials into a product of binomials.		
1. $4g^2 + 11g + 6 = (4g + 3)(g + 2)$	$2. \ \ 36x^2 + 12x + 1 = (6x + 1)^2$	
3. $6m^2 - 7m - 10 = (6m + 5)(m - 2)$	4. $16 - 56z + 49z^2 = (7z - 4)^2$	
5. $8p^2 - 18p - 5 = (4p + 1)(2p - 5)$	6. $81m^2 - 49 = (9m + 7)(9m - 7)$	
7. $3n^2 - 8n + 4 = (3n - 2)(n - 2)$	8. $49a^2 - 100 = (7a + 10)(7a - 10)$	
9. $6y^2 + 5y - 6 = (3y - 2)(2y + 3)$	$10.\ 1 + 2b + b^2 = (1+b)^2$	
$11. 4a^2 - 17a + 4 = (4a - 1)(a - 4)$	12. $9 - r^2 = (3 - r)(r + 3)$	
13. $3r^2 - 2r - 5 = (3r - 5)(r + 1)$	$14. k^4 - 100 = (k^2 + 10)(k^2 - 10)$	
$15. 5x^2 + 19x + 12 = (5x + 4)(x + 3)$	$16. 4t^2 - 4t + 1 = (2t - 1)^2$	
Factor the following binomials.		
1. $x^2 - 25 = (x - 5)(x + 5)$	2. $a^4 - 4 = (a^2 + 2)(a^2 - 2)$	
3. $81 - a^2 = (9 - a)(9 + a)$	4. $100 - b^6 = (10 - b^3)(10 + b^3)$	
F 1(0 =10 (12 =5)(12 + =5)	6 2 .40	

6. $m^2 - 49 = (m+7)(m-7)$

Name:		
maine.		

Date: _____

Unit 1 Review

7. $144 - n^8 = (12 - n^4)(12 + n^4)$	8. $b^{20} - 4 = (b^{10} - 2)(b^{10} + 2)$	
Extending		
Without a calculator, what values of a could you use to complete the trinomial (note that a can be either a		
positive or a negative value).		
1. $x^2 + ax + 18$	2. $y^2 + ay + 24$	
$a = \pm 19, \pm 11, \pm 9$	$a = \pm 25, \pm 14, \pm 11, \pm 10$ 4. $n^2 + an - 20$	
3. $m^2 + am - 16$	4. $n^2 + an - 20$	
$a = \pm 15, \pm 6, 0$	±19, ±8, ±1	
Factor the following trinomials into a product of binomials.		
1. $24h^2 - 20h - 24 = 4(3h + 2)(2h - 3)$	2. $162v^4 - 2w^4 = 2(9v^2 - w^2)(9v^2 + w^2)$	
3. $10x^2 + 80x + 120 = 10(x+2)(x+6)$	4. $4y^2 - 20y - 56 = 4(y - 7)(y + 2)$	
5. $-3m^2 - 18m - 24 = -3(m+2)(m+4)$	6. $-5n^2 + 40n - 35 = -5(n-7)(n-1)$	
7. $21 + 66k + 9k^2 = 3(3k + 1)(k + 7)$	8. $10n^2 + 100n + 250 = 10(n+5)^2$	
9. $2x^2 + 5xy + 2y^2 = (2x + y)(x + 2y)$	10. $10p^3 - 1960p = 10p(p+14)(p-14)$	
$11. 16b^2 + 60b - 100 = 4(4b - 5)(b + 5)$	12. $343b^2 - 7b^4 = 7b^2(7-b)(7+b)$	
$13. 4b^2 - 35ab + 49a^2 = (4b - 7a)(b - 7a)$	$14.98n^2 - 200 = 2(7n - 10)(7n + 10)$	
$15. 7q^3r^2 + 53q^2r^2 + 28qr^2 = qr^2(7q+4)(q+7)$	$16.81x^4 - 900x^2 = 9x^2(3x - 10)(3x + 10)$	
$17. 9 - 3p - 2p^2 = (3 - 2p)(p + 3)$	$18. \ 100m^2 + 180m + 81 = (10m + 9)^2$	
$19. \ 2w^2v^2 + 11wv + 5 = (2vw + 1)(vw + 5)$	20. $400v^2w^4 - 36v^4 = 4v^2(10w^2 - 3)(10w^2 + 3)$	
Factor the following binomials.		
1. $4m^2 - 25 = (2m + 5)(2m - 5)$	2. $125 - 5r^2 = 5(5 - r)(5 + r)$	
3. $121p^6 - 25q^4 = (11p^3 + 5q^2)(11p^3 - 5q^2)$	4. $4z^2 - 64 = 4(z+4)(z-4)$	
5. $900a^2 - 81 = (30a + 9)(30a - 9)$	6. $9s^8 - 4t^2 = (3s^4 + 2t)(3s^4 - 2t)$	

Extending

1. Find all the trinomials that begin with $9m^2$, end with + 16, and can be factored.

$$9m^2 \pm 145m + 16$$

 $9m^2 \pm 74m + 16$
 $9m^2 \pm 51m + 16$
 $9m^2 \pm 40m + 16$
 $9m^2 \pm 30m + 16$
 $9m^2 \pm 26m + 16$
 $9m^2 \pm 25m + 16$
 $9m^2 \pm 24m + 16$