Name:

Chapter 7 and 8 Graphing Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Learning Goal 7.1	Applying one or more transformations to a graph, including
	translations, stretches and reflections.

1. Explain the transformations of the following functions from the original $f(x) = 2^x$ in the order that you would apply them in. State the domain and range of each function and the equation of the asymptote.

Developing			
a. $y = -3 \times 2^x$	b. $y = 2^{-3x}$	c. $y = \frac{1}{3} \times 2^{x/5}$	
d. $y = -2^{x+2}$	e. $y = \frac{1}{7} \times 2^x + 3$	f. $y = 2^{x-5} - 9$	

2. Explain the transformations of the following functions from the original $f(x) = \log_3 x$ in the order that you would apply them in. State the domain and range of each function and the equation of the asymptote.

Proficient			
g. $y = 3\log_3(-x) + 8$	h. $y = -\log_3(2(x-5)) + 3$	i. $y = -\frac{1}{4}\log_3(x-7) - 6$	
j. $y = -3\log_3(-(x+1)) + 8$	k. $y = 1.75 \log_3(0.25(x - 1.5))$	I. $y = -\frac{1}{2}\log_3(x+6) - 4$	

3. Explain the transformations of the following functions from the original $f(x) = \ln x$ in the order that you would apply them in. State the domain and range of each function and the equation of the asymptote.

Extending				
m. $y = -3\ln(-x+7) + 1$	n.	$y - 5 = \frac{1}{2} \ln\left(\frac{2}{3}x - 4\right)$	0.	$y+1 = -\ln\left(-\frac{1}{2}x+7\right)$

4. Write an equation for the transformations given from the original functions.

Developing		
a. For $y = 3^x$, reflect over the y – axis, translate up 5 and left 2.		
b. For $y = \ln x$, horizontal stretch by 6, reflect over the $x - axis$ and right 7.		
c. For $y = 5^x$, vertical stretch by $2/3$, reflect over both axes.		
Proficient		
d. For $y = \log x$, reflect over the y – axis, horizontal stretch by 3, translate down 7 and left 4.		
e. For $y = 2^x$, horizontal stretch by $\frac{3}{4}$, reflect over both axes, translate up 10 and right 12.		

Date: _____

Name: _____

Chapter 7 and 8 Graphing Review

5.	Graph the original, then the transformed functions. Label any important points, both original and	
	transformed. State the domain and range, and the equation of the asymptote.	

Developing			
a. $y = 2^{x-2} - 4$	b. $y = -2^x + 1$	c. $y = 3 \times 2^x$	
d. $y = 3^{x+3} - 6$	e. $y = 3^{-(x-2)}$	f. $y = \frac{1}{4} \times 3^x$	
g. $y = -3 \log_2 x$	h. $y = \log_2(-2x)$	i. $y = -\log_2\left(\frac{x}{4}\right)$	
j. $y = -2\log_3 x$	$k. y = \frac{1}{3}\log_3(-x)$	$1. y = -\frac{1}{2}\log_3 x$	
	Proficient		
m. $y = -\frac{1}{4} \times 2^{x-1} - 3$	n. $y = 2^{-1/2(x+3)} + 6$	o. $y = -2^{3(x+2)} + 5$	
p. $y = -2 \times 3^{x+5} + 1$	q. $y = 2 \times 3^{5(x-4)} + 3$	r. $y = \frac{1}{2} \times 3^{3(x+2)} - 5$	
s. $y = -3\log_2(x-7) - 5$	t. $y = -\log_2(2(x-4)) - 3$	u. $y = \frac{1}{4}\log_2(-(x-6)) - 2$	
v. $y = -\log_3 2(x-3) + 4$	w. $y = 3\log_3(-(x+2)) - 1$	x. $y = \log_3\left(-\frac{1}{2}(x+1)\right) + 3$	
Extending			
y. $y = -3 \times 2^{1/4x+2} + 6$	z. $y = 5 \times 2^{-1/2^{x+1}} + 4$	aa. $y = -\frac{1}{2} \times 2^{-3x+9} - 4$	
bb. $y = -2\log_3(3x+4) + 5$	cc. $y = 2\log_3(-4x - 4) + 3$	dd. $y = -2\log_3(3x - 6) - 1$	

Developing			
6. Express each equation in logarithmic form.			
a. $5^3 = 125$	b. $2^6 = 64$	c. $7^3 = 343$	
d. $36^{-1/2} = \frac{1}{6}$	e. $2^{3/2} = \sqrt{8}$	f. $10^4 = 10\ 000$	
7. Express each equation in exponential form.			
a. $\log_3 243 = 5$	b. $\log_9 6561 = 4$	c. $\log 0.0001 = -4$	
d. $\log_{27}\left(\frac{1}{3}\right) = -\frac{1}{3}$	$e. \qquad \log_4 \sqrt{64} = \frac{3}{2}$	f. $\ln e = 1$	
8. Find the value of x in the following equations without a calculator.			
a. $x = \log 0.001$	b. $\log_9 x = 3$	c. $\log_x(1/16) = -4$	
d. $x = \log_5 \sqrt{5}$	e. $\log_4 x = -2$	f. $\log_{3x} 1 = 3$	

Chapter 7 and 8 Graphing Review

Extending

- 9. In 1990, the population of a town was 32 000 and was increasing at a rate of 3.5% per year. Write an equation to represent the population of this town, *P*, as a function of the number of years, *n*, since 1990.
- 10. A colony of insects can multiply fivefold in 6 weeks. There are 800 insects now.
 - a. Write an equation to represent the number of insects, N, as a function of time elapsed in weeks, w.
 - b. Calculate the number of insects after 6 weeks and after 18 weeks.
 - c. How many times as great is the number of insects after 18 weeks than after 6 weeks?
- 11. A ball is dropped from a height of 4.0 m to the floor. After each bounce, the ball rises to 55% of its previous height.
 - a. Write an equation that represents the height of the ball, *h*, after *n* bounces.
 - b. What is the total vertical distance the ball has travelled after 4 bounces?