Name: \qquad Date: \qquad

Learning Goal 2.3	Use of sine and cosine laws to solve non-right triangles, including ambiguous cases.

The Ambiguous case when we're given 2 sides that don't contain an
angle. angle.

Case 1

No solutions. (no triangle.

Case 2

One solution (unique triangle)

Case 4

two triangles but you'l know which
one yours dealing with
LA is either acute or obtuse.

Q

$$
\begin{array}{rlrl}
23.4 \times \frac{\sin 36}{24.8}=\frac{\sin Q}{23.4} \times 23.4 & 36^{\circ} & +34^{\circ}+R=1 \\
R & =180^{\circ}-36 \\
\frac{23.4 \times \sin 36}{24.8} & =\sin Q & & =110^{\circ} \\
Q=\sin ^{-1}\left(\frac{23.4 \times \sin 36}{24.8}\right) & \fallingdotseq 34^{\circ}
\end{array}
$$

Example $\ln \triangle A B C, \Varangle A=30^{\circ}, a=24 \mathrm{~cm}$ and $b=42 \mathrm{~m}$. solyethetriangte, expressing all answers to the

$$
\frac{\sin A}{a}=\frac{\sin B}{b}
$$

$$
42 \times \frac{\sin 30}{24}=\frac{\sin B}{42} \times 42
$$

$$
\sin B=\frac{42 \times \sin 30}{24}
$$

$$
\begin{aligned}
B & =\sin ^{-1}\left(\frac{42 \times \sin 30}{24}\right) \\
& =61^{\circ}
\end{aligned}
$$

$a<b$ Find $\& B$.

$$
\begin{gathered}
\sin A=\frac{h}{b} \\
42 \times \sin 30=\frac{h}{42} \times 42
\end{gathered}
$$

$$
h=42 \times \sin 30 \doteq 21
$$

$$
\begin{array}{r}
h<a<b \Rightarrow 2 \text { triangles } \\
\text { (case } 3 \text {) }
\end{array}
$$

$$
B^{\prime}=180-B
$$

$$
=180-61
$$

$$
=119^{\circ}
$$

