Name: \qquad Date: \qquad

Learning Goal 2.3
 Use of sine and cosine laws to solve non-right triangles, including ambiguous cases.

1. In $\triangle L M N \npreceq L=64^{\circ}, l=25.2 \mathrm{~cm}$ and $m=16.5 \mathrm{~cm}$. Determine the measure of $\Varangle N$ to the nearest degree.

Because $l>m$ and $\Varangle L$ is an acute angle, there is only one possible triangle.

$$
\begin{aligned}
& \frac{\sin L}{l}=\frac{\sin M}{m} \\
& \frac{\sin 64}{25.2}=\frac{\sin M}{16.5} \\
& 16.5 \times \frac{\sin 64}{25.2}=\sin M \\
& \Varangle M=\sin ^{-1}\left(16.5 \times \frac{\sin 64}{25.2}\right) \\
& \Varangle M=37^{\circ} \\
& \Varangle N=180^{\circ}-64^{\circ}-37^{\circ} \\
& \Varangle N=79^{\circ}
\end{aligned}
$$

2. In $\triangle A B C, \Varangle A=39^{\circ}, a=6 \mathrm{~cm}$ and $b=10 \mathrm{~m}$. Solve the triangle, leaving all answers to the nearest unit.

Because $a<b$, we need to check the height of the triangle first to make sure that the given dimensions can create a triangle.

$$
\begin{gathered}
\sin A=\frac{h}{b} \\
\sin 39^{\circ}=\frac{h}{10} \\
h=10 \times \sin 39^{\circ} \\
h \approx 6.3 \mathrm{~cm}
\end{gathered}
$$

So $a<h$ and therefore there are no solutions.

