Name: \qquad Date: \qquad

Learning Goal 2.2	Limits at infinity and the definition of the derivative

We will apply these methods to four different types of limits:
1.
2.
$\lim _{x \rightarrow \infty} f(x)$
3.

$$
\lim _{x \rightarrow-\infty} f(x)
$$

4.

Fact \#1

If r is a positive rational number and number and c is any real number, then
a. $\lim _{x \rightarrow \infty} 2 x^{4}-x^{2}-8 x$
b. $\lim _{x \rightarrow-\infty} \frac{1}{3} x^{5}+2 x^{3}-x^{2}+8$

If $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is a polynomial of degree $n\left(a_{n} \neq 0\right)$, then

Definition

The function $f(x)$ will have a horizontal asymptote at $y=L$ if either of the following are true.
a. $\quad \lim _{x \rightarrow \infty} \frac{2 x^{4}-x^{2}-8 x}{-5 x^{4}+7}$
b. $\lim _{x \rightarrow-\infty} \frac{2 x^{4}-x^{2}-8 x}{-5 x^{4}+7}$
c. $\lim _{x \rightarrow \infty} \frac{4 x^{2}+x^{6}}{1-5 x^{3}}$
d. $\lim _{x \rightarrow-\infty} \frac{4 x^{2}+x^{6}}{1-5 x^{3}}$

Example Sketch the graph of $y=(x-2)^{4}(x+1)^{3}(x-1)$ by finding its intercepts and its limits as $x \rightarrow \pm \infty$.

