\qquad

Learning Goal 2.2

Limits at infinity and the definition of the derivative

We will apply these methods to four different types of limits:

1. Basic

> 2. one-sided $\lim _{\substack{x \rightarrow a^{-}}} \lim _{x \rightarrow a^{+}}$ $\lim _{x \rightarrow \infty} f(x)$

- very big
positive values.

3. Infinite

$$
\begin{gathered}
\lim _{x \rightarrow a} f(\pi)=\infty \\
\lim _{x \rightarrow-\infty} f(x)
\end{gathered}
$$

- very BIG

Negative values.
4. Limits at infinity.

Graphically

Fact \#1

clan be a fraction

If r is a positive rational number and number and c is any real number, then

$$
\lim _{x \rightarrow \infty} \frac{c}{x^{r}}=0 \text { and } \lim _{x \rightarrow-\infty} \frac{c}{x^{r}}=0
$$

a. $\lim _{x \rightarrow \infty} 2 x^{4}-x^{2}-8 x=\infty$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} 2 x^{4}-\lim _{x \rightarrow \infty} x^{2}-\lim _{x \rightarrow \infty} 8 x \\
& =\infty-\infty-\infty \lim _{x \rightarrow \infty} x\left(2 x^{3}-x-8\right)
\end{aligned}
$$

b. $\lim _{x \rightarrow-\infty} \frac{1}{3} x^{5}+2 x^{3}-x^{2}+8$
$=\lim _{x \rightarrow-\infty} \frac{1}{3} x^{5}$
$x \rightarrow-\infty$
$=-\infty$

If $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is a polynomial of degree $n\left(a_{n} \neq 0\right)$, then

$$
\lim _{x \rightarrow \pm \infty} p(x)=a_{n} x^{n}
$$

Assignment

Definition

The function $f(x)$ will have a horizontal asymptote at $y=L$ if either of the following are true.
$\lim _{x \rightarrow \infty} f(x)=L$ OR $\lim _{x \rightarrow-\infty} f(x)=L$
a. $\lim _{x \rightarrow \infty} \frac{2 x^{4}-x^{2}-8 x}{-5 x^{4}+7}$
$=\lim _{x \rightarrow \infty} \frac{2 x^{4}}{-5 x^{4}} \quad=\lim _{x \rightarrow \infty} \frac{\frac{2 x^{4}}{x^{4}}-\frac{x^{2}}{x^{4}}-\frac{8 x}{x^{4}}}{-\frac{5 x^{4}}{x^{4}}+\frac{7}{x^{4}}}$
$=-2$
$=-\frac{2}{5}$
$=-\frac{2}{5}$
Horizontal asymptote © $-\frac{2}{5}$
$=\lim _{x \rightarrow-\infty} \frac{2 x^{4}}{-5 x^{4}}$
$=\frac{-2}{5}$
asymptote runs
in boon directions.
c. $\lim _{x \rightarrow \infty} \frac{4 x^{2}+x^{6}}{1-5 x^{3}}$
$=\lim _{x \rightarrow \infty} \frac{x^{6}}{-5 x^{3}}$
$=\lim _{x \rightarrow \infty} \frac{x^{3}}{-5}$
$=-\infty \quad$ No asymptote.
d. $\lim _{x \rightarrow-\infty} \frac{4 x^{2}+x^{6}}{1-5 x^{3}}$
$=\lim _{x \rightarrow-\infty} \frac{x^{3}}{-5}$
$=\infty$
degree 8
Example Sketch the graph of $y=(x-2)^{4}(x+1)^{3}(x-1)$ by finding its intercepts and its limits as $x \rightarrow \pm \infty$.

1. x-intercepts) $y=0$ $(x-2)^{4}(x+1)^{3}(x-1)=0$
$\begin{array}{ccc}\downarrow & \downarrow & \downarrow \\ x=2 & x=-1 & x=1 \\ \text { mult.4 } & \text { malt } 3 & \text { mule } 1\end{array}$
2. y-intercept $x=0$

$$
(-2)^{4}(1)^{3}(-1)=-16
$$

3. end behaviour (units $\odot \infty$)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}(x-2)^{4}(x+1)^{3}(x-1) \\
& =\lim _{x \rightarrow \infty} x^{4} \times x^{3} \times x \quad \lim _{x \rightarrow-\infty} x^{8}=\infty
\end{aligned}
$$

$$
=\lim _{\substack{x \rightarrow \infty \\ \Delta 1 \rightarrow \Delta 7}} x^{8}=\infty
$$

