\qquad

Learning Goal 2.2	Limits at infinity and the definition of the derivative

More Questions - Solutions

1. Find the following limits at infinity.
a. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+7}{x^{2}+47 x+1}$
b. $\lim _{x \rightarrow \infty} \frac{2 x^{2}+3}{5 x^{2}+x}$
$=\lim _{x \rightarrow \infty} \frac{2 x^{2}}{x^{2}}$
the limit at infinity of a ratio of polynomials is the
$=\lim _{x \rightarrow \infty} 2$
same as the limit at infinity of their leading terms
$=\lim _{x \rightarrow \infty} \frac{2 x^{2}}{5 x^{2}}$
$=2$
$=\lim _{x \rightarrow \infty} \frac{2}{5}$
$=\frac{2}{5}$
c. $\lim _{x \rightarrow \infty} x^{3}-x$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} x^{3} \\
& =\infty
\end{aligned}
$$

d. $\lim _{x \rightarrow-\infty} \frac{5 x^{3}-3 x^{2}+1}{x^{2}+2 x+4}$
$=\lim _{x \rightarrow-\infty} \frac{5 x^{3}}{x^{2}}$
$=\lim _{x \rightarrow-\infty} 5 x$
$=-\infty$
f. $\quad \lim _{x \rightarrow \infty} \frac{6}{\sqrt{x^{3}}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{6}{x^{3 / 2}} \\
& =0
\end{aligned}
$$

g. $\lim _{x \rightarrow \infty} \cos x$

$$
=\mathrm{DNE}
$$

the function oscillates between -1 and 1 and thus never converges to a
finite number
h. $\lim _{x \rightarrow \infty} \frac{2^{x}}{x^{2}}$
the numerator grows much faster than the denominator

$$
=\lim _{x \rightarrow \infty} 2^{x}
$$

$$
=\infty
$$

