\qquad Date: \qquad

Learning Goal 2.2 Solve problems involving multiple right triangles.

Recap: Angles of Elevation and Depression

Example Calculate the measure of $\Varangle A B C$, to the nearest degree.

1. Find $\overline{B C}$ (opposite to $\angle D$)
$10 \times(\sin 35)=\left(\frac{\overline{B C}}{10}\right) \times 10$
ire of $\Varangle A B C$, to
te to $\Varangle D)$

$$
\begin{aligned}
\overline{B C} & =10 \times \sin 35 \\
& =5.7 \mathrm{~m}
\end{aligned}
$$

calculator

$(A B C))=\left(\frac{5.7}{12}\right)^{\cos ^{-1}}$

$$
\triangle A B C=\cos ^{-1}\left(\frac{5.7}{12}\right)
$$

$$
=62^{\circ}
$$

Example What is the length of side y in the following diagram, to the nearest tenth of a centimetre?

Assignment

$$
P R=8.7 \mathrm{~cm}
$$

Example The Saskatoon Balloon Festival is organized by Sundance Balloons and the Canada Remembers Airshow. In Kinsmen Park, Wayne has tethered his balloon to the ground at points B, C, and D, using three guy wires, as shown.
a. What is the length of $C D$, to the nearest tenth of a metre?

$$
\begin{aligned}
\forall C B D & =46^{\circ} \\
\overline{B D} & =150 \mathrm{~m} \text { hypotenuse of } B C D
\end{aligned}
$$

$$
\begin{aligned}
150 \times(\sin 46) & =\left(\frac{\overline{C D}}{150}\right) \times 150 \\
\overline{C D} & =150 \times \sin 46 \\
& =107.9 \mathrm{~m}
\end{aligned}
$$

b. What is the height of the hot air balloon, to the nearest tenth of a metre?

$$
\begin{aligned}
\Varangle A D C & =50^{\circ} \\
\overline{C D} & =107.9 \mathrm{~m} \text { adjacent to } \Varangle A D C \\
107.9 \times(\tan 50) & =\left(\frac{\overline{A C}}{107.9}\right) \times 107.9 \\
\overline{A C} & =107.9 \times \tan 50 \\
& =128.6
\end{aligned}
$$

The height of the balloon is 128.6 m .

