Name: _____

Date: _____

Learning Goal 3.3

Factor trinomials of the form $ax^2 + bx + c$.

Thinking of multiplication as an area model again, consider the multiplication statement 12×13

$$OOJ = OJ \times OJ$$
 •

$$3 \times 10 = 30$$

•
$$2 \times 10 = 20$$

•
$$|0 \times 10 = |00|$$

• $3 \times |0 = 30|$
• $2 \times 10 = 20$

•
$$2 \times 3 = 6$$

This model assumes each of the small squares has a side length of 1 Whit, and an area of 1 whit^2 . Give each space a different value and reconsider what the value of the overall area could be.

Side length of the small square: 2 units

Area of the small square: $2 \times 2 = 4$ units.

Area of the overall rectangle:

Now what happens if you don't know the value of the side length?

$$\begin{array}{c|c}
x & x^2 & x \\
x & x & x
\end{array}$$

Using a single x^2 tile and as many of the others as you like, create a rectangle. What expression do your tiles

represent?

Write out the multiplication statement for this area.

$$(\chi+1)(\chi+4)$$

 $\chi^2 + 5\chi + 4$ these are equal.

Compare With your group! What patterns do you see in your factors and products? Can you come up with a faster way? Make a different rectangle.