Name:					

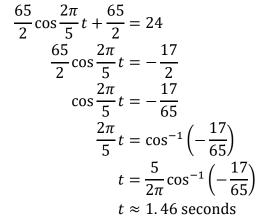
Date:		
Date.		

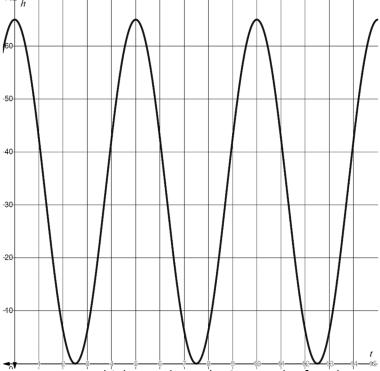
Learning Goal 5.1

Graphing primary trigonometric functions, including transformations and characteristics.

More Questions - Solutions

- 1. A tack is stuck in the top of a wheel with a diameter of 65 cm. When the wheel is moving slowly it rotates 12 times per minute.
 - a. Sketch a graph of showing the path of the tack for 15 sec.
 - b. Write an equation to model the path of the tack.


$$a = \frac{65}{2}$$
 $\frac{2\pi}{b} = 5$ $b = \frac{2\pi}{5}$ $c = \frac{65}{2}$


$$h(t) = \frac{65}{2} \cos \frac{2\pi}{5} t + \frac{65}{2}$$

c. State the domain and range of the function.

$$\{x | x \ge 0, x \in \mathbb{R}\}$$
$$\{y | 0 \le y \le 65, y \in \mathbb{R}\}$$

d. At what time did the tack reach a height of 24 cm in its first revolution? (round to nearest hundredth of a second.)

e. How high was the tack 12 seconds after the wheel began to move?

$$h = \frac{65}{2}\cos\frac{2\pi}{5}(12) + \frac{65}{2}$$
$$h = \frac{65}{2}\cos\frac{24\pi}{5} + \frac{65}{2}$$
$$h \approx 6.2 \text{ cm}$$

2. The depth of the water in a harbor can be modeled by the function

$$h(t) = 3\sin\frac{\pi(t-2)}{64} + 7,$$

where h is the ocean depth in meters and t is the time of day.

a. How deep is the water at 8:17 pm?

8: 17 pm =
$$20\frac{17}{60} = \frac{1217}{60}$$

 $h = 3\sin\frac{\pi(\frac{1217}{60} - 2)}{6.4} + 7$
 $h = 3\sin\frac{\pi(\frac{1097}{60})}{6.4} + 7$
 $h = 3\sin\frac{1097\pi}{384} + 7$
 $h \approx 8.3 \text{ m}$

b. At what time(s) does the depth reach 9 m in a 24 hour period?

$$3\sin\frac{\pi(t-2)}{6.4} + 7 = 9$$

$$3\sin\frac{\pi(t-2)}{6.4} = 2$$

$$\sin\frac{\pi(t-2)}{6.4} = \frac{2}{3}$$

$$\frac{\pi(t-2)}{6.4} = \sin^{-1}\left(\frac{2}{3}\right)$$

$$t - 2 = \frac{6.4}{\pi}\sin^{-1}\left(\frac{2}{3}\right) + 2$$

$$t_1 \approx \frac{6.4}{\pi}(0.7297) + 2$$

$$t_1 \approx 3.5 \text{ hrs}$$

$$\approx 3:30 \text{ am}$$

$$t_3 \approx \frac{6.4}{\pi}(2\pi + 0.7297) + 2$$

$$t_3 \approx 16.3 \text{ hrs}$$

$$\approx 4:18 \text{ pm}$$

$$3\sin\frac{\pi(t-2)}{6.4} + 7 = 9$$

$$\frac{6.4}{6.4} = 2$$

$$t_1 \approx \frac{2}{3}$$

$$t_2 \approx \frac{6.4}{\pi}(\pi - 0.7297) + 2$$

$$t_3 \approx 16.3 \text{ hrs}$$

$$\approx 4:18 \text{ pm}$$

$$t_4 \approx \frac{6.4}{\pi}(3\pi - 0.7297) + 2$$

$$t_4 \approx 19.7 \text{ hrs}$$

$$\approx 7:42 \text{ pm}$$