Name: \qquad Date: \qquad
Learning Goal 9.2 Solving quadratic inequalities.

Example You can use a parabolic reflector to focus sound, light, or radio waves to a single point. A parabolic microphone is used by journalists to direct incoming sounds. If the reflector has a width of 50 cm and a maximum depth of 15 cm , describe the region that the microphone can cover.
$(-25,-15)$
$\{x \mid-50 \leqslant x \leqslant 0, x \in \mathbb{R}\}$
$\{y \mid-15 \leq y \leq 0, y \in \mathbb{R}\}$

$$
(10,2450)
$$

Example A bus company currently charges a fare of $\$ 50$ on one of its routes and averages 45 passengers per trip. If is estimated that for every $\$ 2$ increase in the price, one fewer passenger will take the bus. Write an inequality that models the revenue for this situation. What fare would produce revenues that exceed $\$ 2000$? Use a graph to show your work.

$$
\text { Revenue }=50 \times 45
$$

$$
\text { Let } R=\text { the revenue }
$$ from bus tickets

$$
x=\text { the number of }
$$ changes in price.

$$
\begin{aligned}
50+2 x & =0 \\
2 x & =-50
\end{aligned}
$$

$$
\text { giving away } \longrightarrow x=-25
$$

the tickets

$$
\begin{aligned}
45-x & =0 \\
45 & =x
\end{aligned}
$$

- no one is riding!

$$
\begin{aligned}
& R=2250-50 x+90 x-2 x^{2} \\
& R=-2 x^{2}+40 x+2250 \\
& \left(-\frac{20}{2}\right)^{2}=(-10)^{2} \\
& =100 \\
& =-2\left(x^{2}-20 x+100-100\right)+2250 \\
& =-2\left(x^{2}-20 x+100\right)+200+2250 \\
& =-2(x-10)^{2}+2450 \\
& (10,2450) \\
& \text { vertex. } \\
& 2000 \geqslant-2(x-10)^{2}+2450 \\
& -2450 \\
& -2450 \\
& \frac{-450}{-2} \geqslant \frac{-2}{-2}(x-10)^{2} \\
& \sqrt{225} \leq \sqrt{(x-10)^{2}} \\
& \pm 15 \leqslant x-10 \\
& \begin{aligned}
& 1 .-15 \leqslant x-10 \\
&+10+10 \\
& x \geqslant-5
\end{aligned} \\
& 2 \cdot 15 \leqslant x-10 \\
& x \leqslant 25<\$ 50 \mathrm{inc} \text {. }
\end{aligned}
$$

The bus tickets must be between $\$ 40$ and $\$ 100$.

