Name: \qquad Date: \qquad
Learning Goal 9.2 Solving quadratic inequalities.

1. A highway goes under a bridge formed by a parabolic arch, as shown. The highest point of the arch is 5 m high. The road is 10 m wide, and the minimum height of the bridge over the road is 4 m . Determine the quadratic function that models the parabolic arch of the bridge.

If the minimum height is 4 m , then the points $(-5,4)$ and $(5,4)$ must both lie on the curve.
Find vertex form of the equation:

$$
\begin{gathered}
y=a(x-p)^{2}+q \\
y=a(x-0)^{2}+5 \\
y=a x^{2}+5
\end{gathered}
$$

Then find the expansion/compression factor by using one of the points you found:

$$
\begin{gathered}
4=a(5)^{2}+5 \\
4=25 a+5 \\
-1=25 a \\
a=-\frac{1}{25} \\
y=-\frac{1}{25} x^{2}+5
\end{gathered}
$$

Now the bridge goes above the highway, so I want the point $(0,0)$ to be false:

$$
\begin{gathered}
0 \llbracket-\frac{1}{25}(0)^{2}+5 \\
0 \llbracket 0+5 \\
0 \geq 5 \\
y \geq-\frac{1}{25} x^{2}+5 \\
\{y \mid y>0, y \in \mathbb{R}\}
\end{gathered}
$$

2. To raise money, the student council sells candy - grams each year. From past experience, they expect to sell 400 candy - grams at a price of $\$ 4$ each. They have also learned from experience that each $\$ 0.50$ increase in the price causes a drop in sales of 20 candy - grams. Write an equation that models this situation. Suppose the student council needs revenue of at least $\$ 1800$. Solve an inequality to find all the possible prices that will achieve the fundraising goal.

Let R be the revenue in dollars, and x be the number of $\$ 0.50$ price changes
Revenue $=$ cost x price

$$
R=(4+0.5 x)(400-20 x)
$$

$$
1800<(4+0.5 x)(400-20 x)
$$

$$
1800<1600-80 x+200 x-10 x^{2}
$$

$$
1800<1600+120 x-10 x^{2}
$$

$$
0<-200+120 x-10 x^{2}
$$

$$
0<-10 x^{2}+120 x-200
$$

$$
0<-10\left(x^{2}-12 x+20\right)
$$

$$
0<-10(x-2)(x-10)
$$

So one factor needs to be positive and the other negative.

$2<x<10$

No solutions

$$
\{x \mid 2<x<10, x \in \mathbb{R}\}
$$

T1he cost needs to be raised somewhere in between $\$ 1.00$ and $\$ 5.00$ for them to meet their revenue goals.

