\qquad Date: \qquad triangles, including ambiguous cases.
$\sin ^{2} A$

$$
\begin{array}{rlrl}
x c \times \sin A & =\frac{h}{c} \times c & c \times \cos A & =\frac{x}{c} \times c \\
h & =c \times \sin A & x & =c \times \cos A
\end{array}
$$

*

$$
\begin{aligned}
& a^{2}=h^{2}+(b-x)^{2} \\
& a^{2}=(c \times \sin A)^{2}+(b-c \times \cos A)^{2} \\
& a^{2}=c^{2} \sin ^{2} A+(b-c \times \cos A)(b-c \times \cos A) \\
& a^{2}=c^{2} \sin ^{2} A+b^{2}-2 b c \times \cos A+c^{2} \cos ^{2} A \\
& a^{2}=c^{2}\left(\sin ^{2} A+\cos ^{2} A\right)+b^{2}-2 b c \times \cos A
\end{aligned}
$$

$$
\left(\frac{h}{c}\right)^{2}+\left(\frac{x}{c}\right)^{2}
$$

$$
*=\frac{h^{2}}{c^{2}}+\frac{x^{2}}{c^{2}}
$$

cosine Law

$$
=\frac{h^{2}+x^{2}}{c^{2}}
$$

$$
a^{2}=c^{2}+b^{2}-2 b c \times \cos A
$$

$$
b^{2}=a^{2}+c^{2}-2 a c \times \cos B
$$

$$
=\frac{c^{2}}{c^{2}}=1
$$

Sine Law versus Cosine Law

| When your given a single
 angle-side pair
 SSA
 SS AS | - only sides SSS |
| :--- | :--- | :--- |
| Assignment | - SAS (side-angle-side) |

Example Lions Gate Bridge has been a Vancouver landmark since it opened in 1938. It is the longest suspension bridge in Western Canada. The bridge is strengthened by triangular braces. Suppose one brace has side lengths $14 \mathrm{~m}, 19 \mathrm{~m}$ and 12.2 m . Determine the measure of the angle opposite the $14-\mathrm{m}$ side to the nearest degree.

$$
\begin{gathered}
c^{2}=a^{2}+b^{2}-2 a b \times \cos C \\
(14)^{2}=(12.2)^{2}+(19)^{2}-2(12.2)(19) \cos C \\
196=148.84+361-463.6 \cos C \\
-148.84-148.84-361 \\
-361 \\
-\frac{313.84}{-463.6}=-\frac{463.6 \cos C}{} \\
\cos ^{-1}(0.67696) \doteq(\cos C) \\
\cos ^{-1} \\
C
\end{gathered}
$$

Example In $\triangle A B C, a=11, b=5$ and $\Varangle C=20^{\circ}$. Sketch a diagram and determine the length of the unknown side and the measures of the unknown angles to the nearest tenth.

LAS \Rightarrow cosine law

$$
\begin{aligned}
1 c^{2} & =a^{2}+b^{2}-2 a b \cos c \\
& =(11)^{2}+(5)^{2}-2(11)(5) \cos 20 \\
& =121+25-110 \cos 20 \\
& =146-110 \cos 20 \\
\sqrt{c^{2}} & =\sqrt{42.6} \\
c & = \pm 6.5
\end{aligned}
$$

(2) $\frac{\sin B}{b}=\frac{\sin C}{c}$

$$
5 \times \frac{\sin B}{5}=\frac{\sin 20}{6.5} \times 5
$$

$$
\sin B=\frac{5 \times \sin 20}{6.5}
$$

$$
B=\sin ^{-1}\left(\frac{5 x \sin 20}{\text { p. } 119.5}\right) \doteq 15^{\circ}
$$

$$
\text { (3) } \begin{aligned}
A+B+C & =180^{\circ} \\
A+15+20 & =180^{\circ} \\
A & =180^{\circ}-20^{\circ}-15^{\circ} \\
& =145^{\circ}
\end{aligned}
$$

