Name: \qquad Date: \qquad

Learning Goal 2.3
 Use of sine and cosine laws to solve non-right triangles, including ambiguous cases.

1. Lions Gate Bridge has been a Vancouver landmark since it opened in 1938. It is the longest suspension bridge in Western Canada. The bridge is strengthened by triangular braces. Suppose one brace has side lengths $14 \mathrm{~m}, 18 \mathrm{~m}$ and 22 m . Determine the measure of the angle opposite the $18-\mathrm{m}$ side to the nearest degree.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
18^{2} & =14^{2}+22^{2}-2(14)(22) \cos A \\
324 & =196+484-616 \cos A \\
-356 & =-616 \cos A \\
\cos A & =\frac{356}{616} \\
A & =\cos ^{-1}\left(\frac{356}{616}\right) \\
A & \approx 55^{\circ}
\end{aligned}
$$

2. In $\triangle A B C, a=9, b=7$ and $\Varangle C=33.6^{\circ}$. Sketch a diagram and determine the length of the unknown side and the measures of the unknown angles to the nearest tenth.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& c^{2}=9^{2}+7^{2}-2(9)(7) \cos (33.6) \\
& c^{2}=81+49-126 \cos (33.6) \\
& c^{2}=130-126 \cos (33.6) \\
& c^{2}=130-104.95 \\
& c^{2}=25.05 \\
& c
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin A}{9} & =\frac{\sin 33.6}{5.0} \\
\sin A & =9 \times \frac{\sin 33.6}{5.0} \\
A & =\sin ^{-1}\left(9 \times \frac{\sin 33.6}{5.0}\right) \\
A & \approx 84^{\circ}
\end{aligned}
$$

3. Nina wants to find the distance between two points, A and B on opposite sides of a pond. She locates a point C that is 35.5 m from A and 48.8 m from B. If the angle at C is 54°, determine the distance $A B$ to the nearest tenth of a metre.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos C \\
c^{2} & =35.5^{2}+48.8^{2}-2(35.5)(48.8) \cos (54) \\
c^{2} & =1260.25+2381.44-3464.8 \cos (54) \\
c^{2} & =3641.69-3464.8 \cos (54) \\
c^{2} & \approx 3641.69-2036.56 \\
c^{2} & \approx 1605.13 \\
c & \approx 40.1
\end{aligned}
$$

The pond is approximately 40.1 m wide.

