Name: Marus Dooley

Date:

Daily Check In

Learning Goal 4.1

Identify and order irrational numbers.

Use a number line to order these numbers least to greatest.

 $\sqrt{2}, \sqrt[3]{-5}, \sqrt[3]{13}, \sqrt{9}, \sqrt[4]{27}$

 $1 < \sqrt{2} < 2$ $< \sqrt{9} = 3$ $0 > \sqrt{5} - 5 < 2$ $2 < \sqrt{27} < 3$ $2 < \sqrt{13} < 3$ 4 | 10 4 | 81

Fantastic!

How did you do? (Circle one)	Emerging	Developing	Proficient	Extending
		<u>•</u>	()	(@)

Chapter 4 Name: Kinch	him	Section 4.2 Irrational Numbers	Roots and Powers Date:
		Daily Check In	
	Learning Goal 4.1	Identify and order irrational numbers	
Use a number lin	ne to order these number	s least to greatest.	76
		s least to greatest. $\sqrt{2}$, $\sqrt[3]{-6}$, $\sqrt[3]{12}$, $\sqrt{16}$, $\sqrt[4]{64}$ $\sqrt{2}$, $\sqrt{64}$ $\sqrt{2}$, $\sqrt{2}$	3.
3,	V-6 12	3/12 4/64	116
How di (Circle	id you do? one)	g Developing Proficien	NICE WOVK!

Roots and Powers

Name: Iker Bowley

Date: 26/04/20

Daily Check In

Learning Goal 4.2

Express an entire radical as a simplified mixed radical and vice versa.

Here is a student's solution for writing $8\sqrt[3]{2}$ as an entire radical.

$$8\sqrt[3]{2} = 8 \cdot \sqrt[3]{2} \times$$

$$= \sqrt[3]{2} \cdot \sqrt[3]{2}$$

$$= \sqrt[3]{2} \cdot 2$$

$$= \sqrt[3]{4}$$

Identify the error the student made, then write the correct solution.

8x8x82=512 $=3\sqrt{512.2}$ $=3\sqrt{83}x2$ $=3\sqrt{512.2}$ $=3\sqrt{20}$ $=3\sqrt{1024}$

Fantastic!

How did you do? (Circle one)	Emerging	Developing	Proficient	Extending
		<u>•</u>	9	(0)

Chapter 4

Section 4.3: Mixed and Entire Radicals

Shirt Roots and Powers

Date: Feb 26 26

Name: Ruchel a

Daily Check In

Learning Goal 4.2

Express an entire radical as a simplified mixed radical and vice versa.

Here is a student's solution for writing $9\sqrt{3}$ as an entire radical.

 $9\sqrt{3} = 9.\sqrt{3}$ $= \sqrt{3}.\sqrt{3}$ $= \sqrt{9}$

Identify the error the student made, then write the correct solution.

953 = 592×3

if the 9 is outside, to get inside it must be squared?

Outstanding!

Ham did 1 3	Emerging	Developing	Proficient	Extending
How did you do? (Circle one)		<u>•</u>	9	(G)

Name: _____

Date: _____

Using exponent laws to simplify expressions with fractional and negative exponents.

Recall the exponent laws for integer bases and whole number exponents.

Product of Powers	$a^m \cdot a^n =$	W+N	$2^4 \times 3^2 = 16 \times 9$
Quotient of Powers	$a^m \div a^n =$	am-n	15 12 15 15 15 15 15 15 15 15 15 15 15 15 15
Power of a Power	$(a^m)^n =$	O'M× N	
Power of a Product	$(ab)^m =$	am pm	$(4\chi^3)^2$ $= 4^2\chi^3 \times 2$ $= 16\chi^6$
Power of a Quotient	$\left(\frac{a}{b}\right)^m =$	am bm	$\left(\frac{3}{5}\right)^4 = \frac{3^4}{5^4}$

These all work the same way as they did last year, we can just use them with

fractional

and

regative

exponents now!

Goodbye!

Quiz: Tomorrow!

Example Simplify by writing as a single power. Do not evaluate.

1.
$$0.8^{2} \cdot 0.8^{-7}$$
 = $\frac{0.8^{2}}{0.8^{7}}$ 2. $\left(-\frac{4}{5}\right)^{2} + \left(-\frac{4}{5}\right)^{5}$ = $\left(-\frac{4}{5}\right)^{2} \times \left(-\frac{4}{5}\right)^{5}$ = $\left(-\frac{4}{5}\right)^{7}$ = $\left(-\frac{4}{5}\right)^{7}$

Assignment

p.241 #1-13, 21, 23

Quiz: Tomorrow!

Example Simplify.

1.
$$m^4n^{-2} \cdot m^2n^3$$

$$2. \ \frac{6x^4y^{-3}}{14xy^2}$$

A good first step if you're feeling overwhelmed: change the expression so all the exponents are positive.

3.
$$(25a^4b^2)^{3/2}$$

4.
$$(x^3y^{-3/2})(x^{-1}y^{1/2})$$

Again, remember your order of operations!

$$5. \quad \frac{12x^{-5}y^{5/2}}{3x^{1/2}y^{-1/2}}$$

6.
$$\left(\frac{50x^2y^4}{2x^4y^7}\right)^{1/2}$$