Name:

\qquad

Daily Check In

Learning Goal 4.1	Identify and order irrational numbers.

Use a number line to order these numbers least to greatest.

Chapter 4
Name: \qquad Kirchine

Date: \qquad

Daily Check In

| Learning Goal 4.1 | Identify and order irrational numbers. |
| :--- | :--- | Identify and order irrational numbers.

Use a number line to order these numbers least to greatest.

Chapter 4

Name:

Date: \qquad $26104 / 20$

Daily Check In

Learning Goal 4.2	Express an entire radical as a simplified mixed radical and vice versa.

Here is a student's solution for writing $8 \sqrt[3]{2}$ as an entire radical.

$$
\begin{aligned}
8 \sqrt[3]{2} & =8 \cdot \sqrt[3]{2} \times \\
& =\sqrt[3]{2} \cdot \sqrt[3]{2} \\
& =\sqrt[3]{2 \cdot 2} \\
& =\sqrt[3]{4}
\end{aligned}
$$

Identify the error the student made, then write the correct solution.

$$
\begin{array}{rl}
8 \times 8 \times 8 & 2=512 \sqrt[3]{2}=832 \\
& =\sqrt[3]{512} \cdot \sqrt[3]{2}=\sqrt[3]{8^{3} \times 2} \\
& =\sqrt[3]{512 \cdot 2}=\sqrt[3]{2^{10}} \\
& =\sqrt[3]{1024}
\end{array}
$$

Chapter 4
Name: \qquad Rnelul G \qquad

Daily Check In

Learning Goal 4.2	Express an entire radical as a simplified mixed radical and vice versa.

Here is a student's solution for writing $9 \sqrt{3}$ as an entire radical.

Identify the error the student made, then write the correct solution.

$$
9 \sqrt{3}=\sqrt{9^{2} \times 3}
$$

if the 9 is outside, to get inside it must be squared ${ }^{2}$

How did you do? (Circle one)	Emerging	Developing	Proficient	Extending
	Cod	0	0	

Name: \qquad Date: \qquad

Using exponent laws to simplify expressions with fractional and negative exponents.

Recall the exponent laws for integer bases and whole number exponents.

These all work the same way as they did last year, we can just use them with
\qquad and
 exponents now!

Quiz: Tomorrow!

Example Simplify by writing as a single power. Do not evaluate.

$$
\begin{aligned}
& \begin{array}{l}
\text { 1. } 0.8^{2} \cdot 0.8^{-7} \\
(-7)
\end{array}=\frac{0.8^{2}}{0.8^{7}} \\
& \text { 2. }\left(-\frac{4}{5}\right)^{2} \div\left(-\frac{4}{5}\right)^{-5}=\left(-\frac{4}{5}\right)^{2} \times\left(-\frac{4}{5}\right)^{5} \\
& =0.8^{2+(-7)} \\
& =0.8^{2-7} \\
& \begin{array}{l}
=\left(-\frac{4}{5}\right)^{2-(-5)}=\left(-\frac{4}{5}\right)^{2+5} \\
=\left(-\frac{4}{5}\right)^{7}
\end{array} \\
& \begin{array}{l}
=0.8^{-5}=\left(\frac{8}{10}\right)^{-5} \\
=\frac{1}{0.8^{5}}=\frac{10^{5}}{8^{5}}
\end{array} \\
& \text { 3. } \frac{\left(1.5^{-3}\right)^{-5}}{1.5^{5}} \\
& =\frac{(1.5)^{-3 x-5}}{1.5^{5}} \\
& =\frac{1.5^{15}}{1.5^{5}} \\
& =\frac{9^{\frac{5}{4}}+\left(-\frac{1}{4}\right)}{9^{3 / 4}} \\
& =\left(-\frac{4}{5}\right)^{7} \\
& \begin{array}{l}
=\frac{(-4)^{7}}{5^{7}}=\frac{(-4)^{7}}{57}
\end{array} \\
& \text { 4. } \frac{9^{5 / 4} \cdot 9^{-1 / 4}}{9^{3 / 4}} \\
& =\left(9^{5 / 4-3 / 4}\right) \times 9^{-1 / 4} \\
& =9^{\frac{2}{4}} \times 9^{-\frac{1}{4}} \\
& =9^{\frac{2}{4}}+\left(-\frac{1}{4}\right) \\
& =9^{\frac{1}{4}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(7^{-4 / 3}\right)^{6} \\
& =7^{-8}=\frac{1}{7^{8}} \\
& =\left(\frac{3}{2}\right)^{14} \\
& =\frac{3^{14}}{2^{14}} \\
& \frac{-4}{3} \times \psi^{2} \\
& \text { Assignment } \\
& \text { p. } 241 \text { \#1-13, 21, } 23
\end{aligned}
$$

Example Simplify.

1. $m^{4} n^{-2} \cdot m^{2} n^{3}$
2. $\frac{6 x^{4} y^{-3}}{14 x y^{2}}$

A good first step if you're feeling overwhelmed: change the expression so all the exponents are positive.
3. $\left(25 a^{4} b^{2}\right)^{3 / 2}$
4. $\left(x^{3} y^{-3 / 2}\right)\left(x^{-1} y^{1 / 2}\right)$

Again, remember your order of operations!
5. $\frac{12 x^{-5} y^{5 / 2}}{3 x^{1 / 2} y^{-1 / 2}}$
6. $\left(\frac{50 x^{2} y^{4}}{2 x^{4} y^{7}}\right)^{1 / 2}$

