
Chapter 3	3
-----------	---

Name:

Date: _____

Learning Goal 3.3	Solving equations algebraically and graphically.
-------------------	--

- 1. The specifications for a cardboard box state that the width must be 5 cm less that the lenth, and hte height must be double the length of the box.
 - a. Write an equation for the volume of the box.
 - b. What is the degree of the polynomial?
 - c. What are the leading coefficient and the constant of this function?
 - d. Describe the end behaviour of the graph of this function.
 - e. What are the restrictions on the domain of this function? Explain how you determined those restrictions.
 - f. What do the x intercept(s) of the graph represent in this context?
 - g. What are the dimensions of a box with a volume of 384 cm^3 ?
- 2. Boxes for candies are to be constructed from cardboard measures 36 cm by 20 cm. Each box is formed by folding a sheet along the dotted lines as shown.

- a. Write an equation for the volume of the box.
- b. What is the degree of the polynomial?
- c. What are the leading coefficient and the constant of this function?
- d. Describe the end behaviour of the graph of this function/ What are the restrictions on the doamin of this funciton? Explain how you determined the restrictions.
- e. What the possible whole number dimensions of the box if the volume is 512 cubic centimetres?
- 3. The length of a pool is 4 feet more than twice the width. The depth of the pool is two thirds the width.
 - a. Write an equation for the volume.
 - b. The volume of the pool is $1188 \ ft^3$. What are the dimensions?
 - c. If we wanted to increase all dimensions by the same amount, but the maximum volume at 2700 ft^3 , what is the maximum size of the pool?