Name: \qquad Date: \qquad
\square
Learning Goal 3.3 Solving equations algebraically and graphically.

1. The specifications for a cardboard box state that the width must be 5 cm less that the length, and the height must be double the length of the box.
a. Write an equation for the volume of the box.

$$
V=2 x^{2}(x-5)
$$

b. What is the degree of the polynomial?
c. What are the leading coefficient and the constant of this function?

$$
\begin{array}{cc}
\text { Leading Coefficient } & \text { Constant } \\
2 & \\
0
\end{array}
$$

d. Describe the end behaviour of the graph of this function.

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty} V(x)=+\infty \\
& \lim _{x \rightarrow-\infty} V(x)=-\infty
\end{aligned}
$$

e. What are the restrictions on the domain of this function? Explain how you determined those restrictions.

$$
x>0
$$

f. What do the x-intercept(s) of the graph represent in this context?

The value of the length
g. What are the dimensions of a box with a volume of $384 \mathrm{~cm}^{3}$?

$$
w=3 \mathrm{~cm} \quad l=8 \mathrm{~cm} \quad h=16 \mathrm{~cm}
$$

2. Boxes for candies are to be constructed from cardboard measures 36 cm by 20 cm . Each box is formed by folding a sheet along the dotted lines as shown.

a. Write an equation for the volume of the box.

$$
V=2 x(10-x)(18-x)
$$

b. What is the degree of the polynomial?

$$
3
$$

c. What are the leading coefficient and the constant of this function?
Leading Coefficient Constant

2
0
d. Describe the end behaviour of the graph of this function/ What are the restrictions on the domain of this funciton? Explain how you determined the restrictions.

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty} V(x)=+\infty \\
& \lim _{x \rightarrow-\infty} V(x)=-\infty
\end{aligned}
$$

e. What the possible whole number dimensions of the box if the volume is 512 cubic centimetres?

$$
w=16 \mathrm{~cm} \quad l=16 \mathrm{~cm} \quad h=2 \mathrm{~cm}
$$

3. The length of a pool is 4 feet more than twice the width. The depth of the pool is two thirds the width.
a. Write an equation for the volume.

$$
V=\frac{2}{3} w^{2}(4+2 w)
$$

b. The volume of the pool is $1188 \mathrm{ft}^{3}$. What are the dimensions?

$$
w=9 \mathrm{ft} \quad l=22 \mathrm{ft} \quad h=6 \mathrm{ft}
$$

c. If we wanted to increase all dimensions by the same amount, but the maximum volume at $2700 \mathrm{ft}^{3}$, what is the maximum size of the pool?

$$
w=12 \mathrm{ft} \quad l=25 \mathrm{ft} \quad h=9 \mathrm{ft}
$$

