\qquad Date: \qquad

Chapter 4 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Identify and order irrational numbers.

Tell whether each number is rational or irrational.
For those that are irrational, estimate the value of the radical to one decimal place, without a calculator.

For those that are rational, evaluate the radical without a calculator. You may use your sheet of perfect numbers (from Section 4.1)

Emerging	Developing	Proficient
1. $\sqrt{81}$	2. $\sqrt[5]{100}$	3. $\sqrt[4]{2000}$
4. $\sqrt{169}$	5. $\sqrt[3]{64}$	$6 . \sqrt[3]{1738}$
7. $\sqrt{150}$	8. $\sqrt[4]{16}$	9. $\sqrt[5]{1864}$
10. $\sqrt{125}$	11. $\sqrt[3]{81}$	12. $\sqrt[3]{100}$
13. $\sqrt{121}$	14. $\sqrt[3]{216}$	$15 . \sqrt[4]{1296}$
16. $\sqrt{49}$	17. $\sqrt[4]{75}$	$18 . \sqrt[7]{128}$
19. $\sqrt{200}$	20. $\sqrt[4]{81}$	21. $\sqrt[5]{248832}$

Developing	
State the index and the radicand of each radical.	
1. $\sqrt[3]{64}$	2. $\sqrt[4]{20000}$
3. $\sqrt[4]{16}$	4. $\sqrt{1738}$
5. $\sqrt[3]{216}$	6. $\sqrt[5]{1864}$
7. $\sqrt[4]{81}$	8. $\sqrt[3]{10000}$

Proficient/Extending

Use a number line to order these numbers from least to greatest, without a calculator.

1. $\sqrt{25}, \sqrt[3]{30} \sqrt[3]{-8}, \sqrt[4]{20}, \sqrt{\frac{144}{9}}$
2. $\sqrt[5]{-243}, \sqrt{4}, \sqrt[3]{\frac{27}{216}}, \sqrt{12}, \sqrt[3]{6}$
\qquad
\qquad

Chapter 4 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Developing	Proficient	
Extending		
Write each radical in simplest form, without a calculator.		
1. $\sqrt{125}$	2. $\sqrt[3]{216}$	3. $\sqrt{216 k^{3}}$
4. $\sqrt{512}$	5. $\sqrt[4]{405}$	6. $\sqrt[3]{-96 x y^{4}}$
7. $\sqrt{80}$	8. $\sqrt[3]{-100}$	9. $\sqrt[4]{48 m^{5} n^{4}}$
10. $\sqrt{147}$	$11 \sqrt[3]{80}$	12. $\sqrt[5]{a^{7} b^{10} c^{2} d^{12}}$

Developing		Proficient		Extending
Write each mixed radical as an entire radical, without a calculator.				
1. $2 \sqrt{3}$	2. $-2 \sqrt[3]{8}$	3. $12 \sqrt{k^{3}}$		
4. $3 \sqrt{5}$	5. $5 \sqrt[4]{2}$	6. $-x y \sqrt[3]{9 x y^{4}}$		
7. $6 \sqrt{3}$	8. $6 \sqrt[3]{10}$	9. $-3 m \sqrt[4]{4 m n^{4}}$		
10. $4 \sqrt{2}$	$11 .-8 \sqrt[3]{8}$	12. $a^{2} d^{3} \sqrt[5]{a^{3} b^{5} c^{2}}$		

Extending

Simplify the radical.

$$
\sqrt[n]{3 \cdot 2^{n} \cdot x^{2 n} \cdot y^{n+3}}
$$

Write the mixed radical as a mixed radical.

$$
2 a b^{2} \cdot \sqrt[n]{5 a b^{2}}
$$

\qquad Date: \qquad

Chapter 4 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Developing	Proficient	Extending
Write each power as a radical in simplest form, without a calculator.		
1. $20^{1 / 2}$	2. $18^{2 / 3}$	3. $\left(12 x^{3} y^{2}\right)^{1 / 2}$
4. $18^{1 / 3}$	5. $32^{4 / 3}$	6. $\left(18 a^{2} b^{5}\right)^{2 / 3}$
7. $12^{1 / 2}$	8. $50^{3 / 2}$	9. $\left(32 m^{2} n^{8}\right)^{3 / 4}$
$10.32^{1 / 2}$	$11.125^{2 / 3}$	12. $\left(8 x^{n+2} y^{n+1}\right)^{2 / n}$
$13.15^{1 / 3}$	$14.27^{5 / 3}$	15. $\left(64 p^{5} q^{9}\right)^{4 / 3}$

Proficient	Extending
Write each power as a radical in two different ways.	Write each power as a radical in two different ways, then write in simplest form without a calculator.
1. $26^{2} / 5$	2. $20^{2 / 3}$
3. $19^{3 / 4}$	4. $25^{2 / 3}$
5. $6^{5 / 2}$	6. $\left(9 n^{4}\right)^{3 / 2}$
7. $40^{2 / 3}$	8. $\left(40 a^{3} b^{4}\right)^{2 / 3}$
9. $3^{5 / 4}$	10. $\left(72 p^{3} q\right)^{5 / 2}$
11. $25^{2 / 3}$	

Extending

Arrange these numbers in order from least to greatest, without using a calculator.

1. $\sqrt[3]{9}, 9^{3 / 2}, 9,(\sqrt[5]{9})^{4}, 9^{1 / 2}$
\qquad
\qquad

Chapter 4 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Understanding and evaluating expressions using negative exponents.		
Developing		roficient
Evaluate each power without using a calculator.		
1. $\left(\frac{2}{3}\right)^{-4}$	2.	0.5^{-2}
3. $\left(\frac{1}{10}\right)^{-2}$	4.	$\left(\frac{1}{4}\right)^{-1 / 2}$
5. $\left(\frac{5}{2}\right)^{-3}$	6.	$(-1000)^{-2 / 3}$
7. $\left(\frac{6}{2}\right)^{-4}$	8.	$(-0.008)^{-4 / 3}$

Proficient		Extending	
Simplify without using a calculator. Your answers should contain only positive exponents.			
1.	$0.5 x^{-2}$	2.	$3 x y\left(\frac{x^{2}}{y^{2}}\right)^{-1 / 2}$
3.	$\left(\frac{a^{2}}{9}\right)^{-1 / 2}$	4.	$\frac{\left(9 a^{3} b^{6}\right)^{-1 / 2}}{\left(3 a^{3} b^{6}\right)^{-2}}$
5.	$\left(-8000 q^{6}\right)^{-2 / 3}$		
6.	$\left(-0.027 m^{3}\right)^{-4 / 3}$		

Extending

Suppose you want $\$ 5000$ in three years. The interest rate for a savings account is 2.9% compounded annually. The money, P dollars, you must invest now is given by the formula

$$
P=5000(1.029)^{-3}
$$

How much must you invest now to have $\$ 5000$ in three years?
\qquad Date: \qquad

Chapter 4 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

> Use exponent laws to simplify expressions using fractional and negative exponents.

Proficient
Extending
Simplify without using a calculator. Your answers should contain only positive exponents.

1. $\quad 2 m^{2} \cdot 2 m^{3}$
2.

$$
m^{4} \cdot 2 m^{-3}
$$

5.

$$
\frac{a^{3}}{a^{5}} \cdot a^{-2}
$$

7.

$$
4 n^{4} \cdot 2 n^{-3}
$$

9.

$$
\frac{2 x^{4} y^{-4} z^{-3}}{3 x^{2} y^{-3} z^{4}}
$$

11.

$$
2 x^{3} y^{-3} \cdot 2 x^{-1} y^{3}
$$

13.

$$
2 y^{5 / 2} \cdot 3 y^{-3}
$$

15.

$$
4 v^{3} \cdot v^{-1 / 3} u^{-2}
$$

17.

$$
4 a^{3} b^{2} \cdot 3 a^{-4} b^{-3}
$$

19.

$$
\frac{2 y^{3} \cdot 3 x y^{3}}{3 x^{2} y^{4}}
$$

21.

$$
4 r^{-3} \cdot 2 r^{2}
$$

23.

$$
\frac{3 m^{-4}}{m^{3}}
$$

25.

$$
2 k^{4} \cdot 4 k
$$

2.

$$
\left(x^{-2} x^{-3}\right)^{4}
$$

4.

$$
\left(n^{3}\right)^{-1 / 3} \cdot 2 n^{-1}
$$

6.

$$
x^{2} y^{-4} \cdot(x y)^{2}
$$

8.

$$
\left(2 x^{4} y^{-3}\right)^{-1}
$$

10.

$$
\frac{\left(16 a^{2} b^{6}\right)^{-1 / 2}}{2 a b^{3}}
$$

12.

$$
\left(\frac{x^{2} y}{y^{-2}}\right)^{-2}
$$

14.

$$
b a^{4} \cdot\left(2 b^{6} a^{4}\right)^{-3 / 2}
$$

16.

$$
\frac{\left(2 x^{-3} z^{2}\right)^{3}}{x^{3} y^{4} z^{2} \cdot x^{-4} z^{3}}
$$

18.

$$
\frac{\left(16 p m^{-1}\right)^{-1 / 4} \cdot 2 m^{-1} p^{3}}{2 p q^{2}}
$$

20.

$$
\left(m \cdot m^{-2} \cdot n^{5 / 3}\right)^{2}
$$

22.

$$
\left(\frac{x^{1 / 2} y^{-2}}{x^{2} y^{1 / 2}}\right)^{4}
$$

24.

$$
\frac{\left(x^{3} y^{2}\right)^{3 / 2}}{\left(x^{-1} y^{-2 / 3}\right)^{1 / 4}}
$$

26.

$$
\frac{\left(x^{-1 / 2} y^{2}\right)^{-5 / 4}}{x^{2} y^{1 / 2}}
$$

\qquad
\qquad

Chapter 4 Review

Extending

Write 3 different expressions for each result.

1. $x^{3 / 2}$ is the product of two powers with rational exponents.
2. $x^{3 / 2}$ is the quotient of two powers with rational exponents.
3. $x^{3 / 2}$ is the result of raising a power with a rational exponent to a rational exponent.
4. $z^{-3 / 4}$ is the product of two powers with rational exponents.
5. $z^{-3 / 4}$ is the quotient of two powers with rational exponents.
6. $z^{-3 / 4}$ is the result of raising a power with a rational exponent to a rational exponent.

Extending

Scientists use the formula

$$
d=0.099 m^{9} / 10
$$

to calculate the volume of water, d litres, that a mammal with mass m kilograms should drink in one day. Calculate how much water a 550 kg moose should drink in 3 days.

