\qquad

Chapter 4 Review Answers

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

```
Learning Goal 4.1 Identify and order irrational numbers.
```

- Tell whether each number is rational or irrational.
- For those that are irrational, estimate the value of the radical to one decimal place, without a calculator.
- For those that are rational, evaluate the radical without a calculator. You may use your sheet of perfect numbers (from Section 4.1)

Developing	Proficient	
1. $\sqrt{81}$ - rational - $=9$	2. $\sqrt[5]{100}$ - irrational - ≈ 2.5	3. $\sqrt[4]{2000}$ irrational ≈ 6.7
4. $\sqrt{169}$ - rational - $=13$	5. $\sqrt[3]{64}$ - rational - $=4$	6. $\sqrt[3]{1738}$ - irrational - ≈ 12.0
7. $\sqrt{150}$ irrational ≈ 12.2	8. $\sqrt[4]{16}$ - rational - $=2$	9. $\sqrt[5]{1864}$ irrational ≈ 4.5
10. $\sqrt{125}$ - irrational - ≈ 11.2	11. $\sqrt[3]{81}$ - irrational - ≈ 4.3	12. $\sqrt[3]{100}$ - irrational - ≈ 4.6
13. $\sqrt{121}$ - rational - = 11	14. $\sqrt[3]{216}$ - rational - $=6$	15. $\sqrt[4]{1296}$ - rational - $=6$
16. $\sqrt{49}$ - rational - $=7$	17. $\sqrt[4]{75}$ - irrational - ≈ 2.9	18. $\sqrt[7]{128}$ - rational - $=2$
19. $\sqrt{200}$ - irrational - ≈ 14.1	20. $\sqrt[4]{81}$ - rational - $=3$	21. $\sqrt[5]{248832}$ - rational - $=12$

Developing

State the index and the radicand of each radical.			
1. $\sqrt[3]{64}$	3,64	2. $\sqrt[4]{20000}$	
$3 . \sqrt[4]{16}$	4,16	4. $\sqrt{1738}$	4,20000

\qquad

Chapter 4 Review Answers

5. $\sqrt[3]{216}$	$6 . \sqrt[5]{1864}$		
7. $\sqrt[4]{81}$	3,216	8. $\sqrt[3]{10000}$	3,1864

Proficient/Extending

Use a number line to order these numbers from least to greatest, without a calculator.

1. $\sqrt{25}, \sqrt[3]{30} \sqrt[3]{-8}, \sqrt[4]{20}, \sqrt{\frac{144}{9}}$

$$
\sqrt[3]{-8}, \sqrt[4]{20}, \sqrt[3]{30}, \sqrt{\frac{144}{9}}, \sqrt{25}
$$

2. $\sqrt[5]{-243}, \sqrt{4}, \sqrt[3]{\frac{27}{216}}, \sqrt{12}, \sqrt[3]{6}$

$$
\sqrt[5]{-243}, \sqrt[3]{\frac{27}{216}}, \sqrt[3]{6}, \sqrt{4}, \sqrt{12}
$$

\qquad

Chapter 4 Review Answers

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Learning Goal 4.2 \quad Express an entire radical as a simplified mixed radical and vice versa.

Developing	Proficient	Extending
Write each radical in simplest form, without a calculator.		
1. $\sqrt{125}$ $5 \sqrt{5}$	2. $\sqrt[3]{216}$ 6	3. $\sqrt{216 k^{3}}$ $6 k \sqrt{6 k}$
4. $\sqrt{512}$ $2^{4} \sqrt{2}=16 \sqrt{2}$	5. $\sqrt[4]{405}$ $3 \sqrt[4]{5}$	6. $\begin{array}{r}\sqrt[3]{-96 x y^{4}} \\ 2 y \sqrt[3]{-12 x y}\end{array}$
7. $\sqrt{80}$ $4 \sqrt{5}$	8. $\sqrt[3]{-100}$ $\sqrt[3]{-100}$	9. $\sqrt[4]{48 m^{5} n^{4}}$ $2 m n \sqrt[4]{3 m}$
10. $\sqrt{147}$ $7 \sqrt{3}$	11. $\sqrt[3]{80}$ $2 \sqrt[3]{10}$	$\begin{aligned} & \text { 12. } \sqrt[5]{a^{7} b^{10} c^{2} d^{12}} \\ & \qquad a b^{2} d^{2} \sqrt[5]{a^{2} c^{2} d^{2}} \end{aligned}$

Developing	Proficient	Extending
Write each mixed radical as an entire radical, without a calculator.		
1. $2 \sqrt{3}$ $\sqrt{2^{2} \times 3}=\sqrt{12}$	2. $-2 \sqrt[3]{8}$ $\sqrt[3]{-2^{3} \times 8}=\sqrt[3]{-64}$	3. $12 \sqrt{k^{3}}$ $\sqrt{12^{2} k^{3}}=\sqrt{144 k^{3}}$
4. $3 \sqrt{5}$ $\sqrt{3^{2} \times 5}=\sqrt{45}$	5. $5 \sqrt[4]{2}$ $\sqrt[4]{2 \times 5^{4}}=\sqrt[4]{1250}$	6. $-x y \sqrt[3]{9 x y^{4}}$ $\sqrt[3]{(-x y)^{3} \times 9 x y^{4}}=\sqrt[3]{-9 x^{4} y^{7}}$
7. $6 \sqrt{3}$ $\sqrt{3 \times 6^{2}}=\sqrt{108}$	8. $6 \sqrt[3]{10}$ $\sqrt[3]{6^{3} \times 10}=\sqrt[3]{2160}$	9. $-3 m \sqrt[4]{4 m n^{4}}$ $\sqrt[4]{(-3 m)^{2} \times 4 m n^{4}}=\sqrt[4]{36 m^{3} n^{4}}$
10. $4 \sqrt{2}$ $\sqrt{2 \times 4^{2}}=\sqrt{32}$	$\begin{aligned} & \text { 11. }-8 \sqrt[3]{8} \\ & \sqrt[3]{8 \times-8^{3}}=\sqrt[3]{-4096} \end{aligned}$	$\begin{aligned} & \text { 12. } a^{2} d^{3} \sqrt[5]{a^{3} b^{5} c^{2}} \\ & \sqrt[5]{\left(a^{2} d^{3}\right)^{5} \times a^{3} b^{5} c^{2}} \\ & \quad=\sqrt[5]{a^{13} b^{5} c^{2} d^{15}} \end{aligned}$

Extending

Simplify the radical.

$$
\begin{gathered}
\sqrt[n]{3 \times 2^{n} \times x^{2 n} y^{n+3}} \\
2 x^{2} y^{n} \sqrt[n]{3 y^{3}}
\end{gathered}
$$

Write the mixed radical as an entire radical.

$$
\begin{gathered}
2 a b^{2} \times \sqrt[n]{5 a b^{2}} \\
\sqrt[n]{\left(2 a b^{2}\right)^{n} \times 5 a b^{2}}=\sqrt[n]{2^{n} \times 5 \times a^{n+1} b^{2 n+2}}
\end{gathered}
$$

Name:
Date:

Chapter 4 Review Answers
\qquad
\qquad

Chapter 4 Review Answers

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Learning Goal 4.3	Evaluate expressions with fractional and negative exponents. Connect fractional exponents to radicals, and negative exponents to reciprocals.

Developing

Simplify each power, to a mixed radical where appropriate, without a calculator.

1. $20^{1 / 2}$	2. $12^{1 / 2}$	3. $15^{1 / 3}$
$2 \sqrt{5}$	$2 \sqrt{3}$	$\sqrt[3]{15}$
4. $18^{1 / 3}$ $\sqrt[3]{18}$	5. $32^{\frac{1}{2}}$ ($4 \sqrt{2}$	6. $\begin{aligned} & \left(\frac{2}{3}\right)^{-4} \\ & \frac{81}{16} \end{aligned}$
7. $\left(\frac{1}{10}\right)^{-2}$ 100	$\left(\frac{5}{2}\right)^{-3}$ 8. $\frac{8}{125}$	$\left(\frac{6}{2}\right)^{-4}$ 9. $\frac{1}{81}$
Proficient		
$\begin{aligned} & \text { 10. } 18^{2 / 3} \\ & 3 \sqrt[3]{2^{2} \times 3}=3 \sqrt[3]{12} \end{aligned}$	$\begin{aligned} & 11.32^{4 / 3} \\ & 2^{6 \sqrt[3]{2^{2}}}=64 \sqrt[3]{4} \end{aligned}$	$\begin{aligned} & 12.50^{3 / 2} \\ & 2 \times 5^{3} \sqrt{2}=250 \sqrt{2} \end{aligned}$
$\text { 13. } 125^{2 / 3} 5^{2}=25$	14. $27^{5 / 3}$ $3^{5}=243$	$\text { 15. } 0.5^{-2} \quad 2^{2}=4$
16. $\left(\frac{1}{4}\right)^{-1 / 2}$	$\text { 17. } \begin{array}{r} (-1000)^{-2 / 3} \\ \frac{1}{100} \end{array}$	$\text { 18. } \begin{aligned} &(-0.008)^{-4 / 3} \\ & 5^{4}=625 \end{aligned}$

Developing		
Express each radical as a power.		
1. $\sqrt{17^{3}}$ $17^{3 / 2}$	2. $\sqrt[4]{15^{5}}$ $15^{5 / 4}$	3. $\sqrt[2]{12^{6}}$ 12^{2}
Proficient		
4. $\sqrt{\left(4 x^{2}\right)^{3}}$ $8 x^{3}$	5. $\sqrt[3]{64 x^{6}}$ $4 x^{2}$	6. $\left(\sqrt[4]{81 a^{8}}\right)^{2}$ $9 a^{4}$

\qquad

Chapter 4 Review Answers

Proficient

Simplify each expression without a calculator. Your answers should contain only positive, whole number exponents.

1.	$\begin{gathered} 0.5 x^{-2} \\ \frac{1}{2 x^{2}} \end{gathered}$	2.	$\begin{gathered} \left(\frac{a^{2}}{9}\right)^{-1 / 2} \\ \frac{3}{a} \end{gathered}$	3.	$\begin{gathered} \left(-8 q^{6}\right)^{-2 / 3} \\ \frac{1}{4 q^{4}} \end{gathered}$	4.	$\begin{gathered} \left(-0.027 m^{3}\right)^{-4 / 3} \\ \frac{10000}{81 m^{4}} \end{gathered}$
Extending							
5.	$\begin{gathered} \left(12 x^{3} y^{2}\right)^{1 / 2} \\ 2 x y \sqrt{3 x} \end{gathered}$	6.	$\begin{aligned} & \left(18 a^{2} b^{5}\right)^{2 / 3} \\ & 3 a b^{3} \sqrt[3]{12 a b} \end{aligned}$	7.	$\begin{aligned} & \left(32 m^{2} n^{8}\right)^{3 / 4} \\ & 8 m n^{6} \sqrt[4]{8 m^{2}} \end{aligned}$	8.	
9.	$\frac{\left(64 p^{5} q^{9}\right)^{4 / 3}}{2^{8} p^{6} q^{12} \sqrt[3]{p^{2}}}$		$\begin{gathered} 3 x y\left(\frac{x^{2}}{y^{2}}\right)^{-1 / 2} \\ 3 y^{2} \end{gathered}$	11	$\begin{gathered} \frac{\left(9 a^{3} b^{6}\right)^{-1 / 2}}{\left(3 a^{3} b^{6}\right)^{-2}} \\ 3 a^{4} b^{9} \sqrt{a} \end{gathered}$		$\begin{gathered} \left(8 x^{n+2} y^{n+1}\right)^{2 / n} \\ x^{2} y^{2} \sqrt[n]{2^{6} x^{4} y^{2}} \end{gathered}$

Proficient	Extending
Write each power as a radical in two different ways.	Write each power as a radical in two different ways, then write in simplest form without a calculator.
1. $26^{2 / 5}$ $\sqrt[5]{26^{2}}=(\sqrt[5]{26})^{2}$	2. $20^{2 / 3}$ $\sqrt[3]{20^{2}}=(\sqrt[3]{20})^{2}=2 \sqrt[3]{50}$
3. $19^{3 / 4}$ $\sqrt[4]{19^{3}}=(\sqrt[4]{19})^{3}$	4. $25^{2 / 3}$ $\sqrt[3]{25^{2}}=(\sqrt[3]{25})^{2}=5 \sqrt[3]{5}$
5. $6^{5 / 2}$ $\sqrt{6^{5}}=(\sqrt{6})^{5}$	6. $\left(9 n^{4}\right)^{3 / 2}$ $\sqrt{\left(9 n^{4}\right)^{3}}=\left(\sqrt{9 n^{4}}\right)^{3}=27 n^{6}$
7. $40^{2 / 3}$ $\sqrt[3]{40^{2}}=(\sqrt[3]{40})^{2}$	8. $\left(40 a^{3} b^{4}\right)^{2 / 3}$ $\sqrt[3]{\left(40 a^{3} b^{4}\right)^{2}}=\left(\sqrt[3]{40 a^{3} b^{4}}\right)^{2}=4 a^{2} b^{2} \sqrt[3]{25 b^{2}}$
9. $3^{5 / 4}$ $\sqrt[4]{3^{5}}=(\sqrt[4]{3})^{5}$	10. $\left(72 p^{3} q\right)^{5 / 2}$ $\sqrt{\left(72 p^{3} q\right)^{5}}=\left(\sqrt{72 p^{3} q}\right)^{5}=2^{7} 3^{5} p^{7} q^{2} \sqrt{2 p q}$

Extending

Arrange these numbers in order from least to greatest, without using a calculator.

$$
\begin{aligned}
& \sqrt[3]{9}, 9^{3 / 2}, 9,(\sqrt[5]{9})^{4}, 9^{1 / 2} \\
& \sqrt[3]{9}, 9^{1 / 2},(\sqrt[5]{9})^{4}, 9,9^{3 / 2}
\end{aligned}
$$

Suppose you want $\$ 5000$ in three years. The interest rate for a savings account is 2.9% compounded annually. The money, P dollars, you must invest now is given by the formula

$$
P=5000(1.029)^{-3}
$$

How much must you invest now to have $\$ 5000$ in three years?
\qquad

Chapter 4 Review Answers

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Learning Goal 4.4
 Use exponent laws to simplify expressions with rational exponents.

Proficient

Extending
Simplify without using a calculator. Your answers should contain only positive, whole number exponents.

1.	$\begin{gathered} 2 m^{2} \cdot 2 m^{3} \\ =4 m^{5} \end{gathered}$	2.	$\begin{gathered} \left(x^{-2} x^{-3}\right)^{4} \\ =\frac{1}{x^{20}} \end{gathered}$
3.	$\begin{gathered} m^{4} \cdot 2 m^{-3} \\ \quad=2 m \end{gathered}$	4.	$\begin{aligned} & \left(n^{3}\right)^{-1 / 3} \cdot 2 n^{-1} \\ & =\frac{2}{n^{2}} \end{aligned}$
5.	$\begin{gathered} \frac{a^{3}}{a^{5}} \cdot a^{-2} \\ =\frac{1}{a^{4}} \\ \hline \end{gathered}$	6.	$\begin{gathered} x^{2} y^{-4} \cdot(x y)^{2} \\ =\frac{x^{4}}{y^{2}} \end{gathered}$
7.	$\begin{gathered} 4 n^{4} \cdot 2 n^{-3} \\ =8 n \end{gathered}$	8.	$\begin{gathered} \left(2 x^{4} y^{-3}\right)^{-1} \\ =\frac{y^{3}}{2 x^{4}} \end{gathered}$
9.	$\begin{gathered} \frac{2 x^{4} y^{-4} z^{-3}}{3 x^{2} y^{-3} z^{4}} \\ =\frac{2 x^{2}}{3 y z^{7}} \end{gathered}$	10.	$\begin{gathered} \frac{\left(16 a^{2} b^{6}\right)^{-1 / 2}}{2 a b^{3}} \\ =\frac{1}{8 a^{2} b^{6}} \end{gathered}$
11.	$\begin{gathered} 2 x^{3} y^{-3} \cdot 2 x^{-1} y^{3} \\ =4 x^{2} \end{gathered}$	12.	$\begin{aligned} & \left(\frac{x^{2} y}{y^{-2}}\right)^{-2} \\ & =\frac{1}{x^{4} y^{6}} \end{aligned}$
13.	$\begin{gathered} 2 y^{5 / 2} \cdot 3 y^{-3} \\ =\frac{6 \sqrt{y}}{y} \end{gathered}$	14.	$\begin{gathered} b a^{4} \cdot\left(2 b^{6} a^{4}\right)^{-3 / 2} \\ =\frac{\sqrt{2}}{4 a^{2} b^{8}} \end{gathered}$
15.	$\begin{gathered} 4 v^{3} \cdot v^{-1 / 3} u^{-2} \\ =\frac{4 v^{2} \sqrt[3]{v^{2}}}{u} \end{gathered}$	16.	$\begin{gathered} \frac{\left(2 x^{-3} z^{2}\right)^{3}}{x^{3} y^{4} z^{2} \cdot x^{-4} z^{3}} \\ =\frac{8 z}{x^{8} y^{4}} \end{gathered}$
17.	$\begin{gathered} 4 a^{3} b^{2} \cdot 3 a^{-4} b^{-3} \\ =\frac{12}{a^{4} b^{3}} \end{gathered}$	18.	$\begin{gathered} \frac{\left(16 p m^{-1}\right)^{-1 / 4} \cdot 2 m^{-1} p^{3}}{2 p q^{2}} \\ =\frac{p_{\sqrt[4]{m p^{3}}}^{2 m q^{2}}}{} \end{gathered}$

\qquad

Chapter 4 Review Answers

19.	$\begin{gathered} \frac{2 y^{3} \cdot 3 x y^{3}}{3 x^{2} y^{4}} \\ =\frac{2 y^{2}}{x} \end{gathered}$	20.	$\begin{gathered} \left(m \cdot m^{-2} \cdot n^{5 / 3}\right)^{2} \\ =\frac{n^{3} \sqrt[3]{n}}{m^{2}} \end{gathered}$
21.	$\begin{gathered} 4 r^{-3} \cdot 2 r^{2} \\ =\frac{8}{r} \end{gathered}$	22.	$\begin{gathered} \left(\frac{x^{1 / 2} y^{-2}}{x^{2} y^{1 / 2}}\right)^{4} \\ =\frac{1}{x^{6} y^{10}} \end{gathered}$
23.	$\begin{gathered} \frac{3 m^{-4}}{m^{3}} \\ =\frac{3}{m^{7}} \end{gathered}$	24.	$\begin{aligned} & \frac{\left(x^{3} y^{2}\right)^{3 / 2}}{\left(x^{-1} y^{-2 / 3}\right)^{1 / 4}} \\ = & x^{4} y^{3} \sqrt[4]{x^{3}} \sqrt[6]{y} \\ = & x^{4} y^{32} \sqrt{x^{9} y^{2}} \end{aligned}$
25.	$\begin{gathered} 2 k^{4} \cdot 4 k \\ =8 k^{5} \end{gathered}$	26.	$\begin{gathered} \frac{\left(x^{-1 / 2} y^{2}\right)^{-5 / 4}}{x^{2} y^{1 / 2}} \\ =\frac{\sqrt[8]{x^{5}}}{x^{2} y^{3}} \end{gathered}$

Extending

Write 3 different expressions for each result.

1. $x^{3 / 2}$ as the product of two powers with rational exponents.

$$
x \times x^{1 / 2}=x^{-1} \times x^{5 / 2}=x^{-3 / 2} \times x^{3}
$$

2. $x^{3 / 2}$ as the quotient of two powers with rational exponents.

$$
\frac{x^{2}}{x^{1 / 2}}=\frac{x}{x^{-1 / 2}}=\frac{x^{5 / 2}}{x}
$$

3. $x^{3 / 2}$ as the result of raising a power with a rational exponent to a rational exponent.

$$
\left(x^{1 / 2}\right)^{3}=\left(x^{3}\right)^{1 / 2}=\left(x^{3 / 5}\right)^{5 / 2}
$$

Simplify and write as both a power and a radical.

$$
\begin{array}{c|c|c}
\hline\left(\sqrt[3]{x^{4}}\right)\left(\sqrt[5]{x^{2}}\right) & \left(\sqrt{y^{3}}\right)\left(\sqrt[5]{y^{4}}\right) & \sqrt{\sqrt[3]{a^{5} b^{6}}} \\
x^{26 / 15}=(\sqrt[15]{x})^{26} & x^{23 / 10}=\sqrt[10]{x^{23}} & a^{5 / 6} b=b \sqrt[6]{a^{5}} \\
\hline
\end{array}
$$

\qquad
\qquad

Chapter 4 Review Answers

Extending

Scientists use the formula

$$
d=0.099 \mathrm{~m}^{9 / 10}
$$

to calculate the volume of water, d litres, that a mammal with mass m kilograms should drink in one day. Calculate how much water a 550 kg moose should drink in 3 days.

