Name: _____

Date: _____

Learning Goal 2.4	I can convert numbers between standard form and scientific notation.
-------------------	--

Many of the measurements scientists use are extremely big or extremely small. For example:

- Mass of Neutron
- Distance to the sun

Scientists needed a way of communicating these numbers that is

•

Scientific Notation

Now,

- Mass of Neutron
- Distance to the sun

Positive Exponent	•
Negative Exponent	•

Quiz: Next Day!

Example Express the following numbers in scientific notation.

a. $1200\,\mathrm{g}$

b. 0.00657 m

c. 5601 L

d. 14 100 000 km

e. 0.000 000 698 mg

- f. 12 million hours
- g. The speed of light in a vacuum 299 793 458 m/s
- h. Number of seconds in a day 86 400 s
- i. Mean radius of the earth 6378 km
- j. Radius of an argon atom 0.000 000 000 098 m

To undo scientific notation, or write a number given in scientific notation in standard notation

Positive Exponent	•
Negative Exponent	•

Example Write each number in standard notation.

a. $1.23 \times 10^{-4} \text{ mg}$

b. $7.35\,\times10^{-10}$ mL

c. $7.982 \times 10^6 \text{ km}$

d. $1.6325 \times 10^{10} \text{ kg}$