\qquad

Learning Goal 2.2	Limits at infinity and the definition of the derivative

Recall the difference quotient

$$
\begin{aligned}
& \text { slope Btw } \\
& \text { a Fixed pt of } \\
& \text { a movable pt. }
\end{aligned}
$$

Derivative of $f(x)$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

Derivative of $f(a)$

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Example Find the equation of the tangent line to the parabola $y=x^{2}$ at the point $P(1,1)$.

$$
\begin{array}{rlrl}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} & & f^{\prime}(1)=2(1) \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}\right)-x^{2}}{h} & =2 \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} & & y-y_{1}=m\left(x-x_{1}\right) \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} & & y-1=2(x-1) \\
& =\lim _{h \rightarrow 0} 2 x+h & y-1=2 x-2 \\
& & y=2 x-1
\end{array}
$$

$$
=2 x
$$

Example What is the slope of the tangent line to the function $y=3 / x$ at the point $P(3,1)$.

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{\left(\frac{3}{x+h}\right)-\left(\frac{3}{x}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x-3(x+h)}{x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{3 x}{1} \\
& =\lim _{h \rightarrow 0} \frac{3 x-3 x-3 h}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-3}{h x(x+h)} \\
& =-\frac{3}{x(x+h)} \\
x^{2} & \frac{d y}{d x} \text { at }(3,1)=\frac{-3}{} \\
&
\end{aligned}
$$

Example Find $R^{\prime}(x)$ given $R(x)=\sqrt{5 x-8}$ using the definition of the derivative. no need to evaluate the derivative any where.

$$
\begin{aligned}
R^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{5(x+h)-8}-\sqrt{5 x-8}}{h} \times \frac{\sqrt{5(x+h)-8}+\sqrt{5 x-8}}{\sqrt{5(x+h)-8}+\sqrt{5 x-8}} \\
& =\lim _{h \rightarrow 0} \frac{(5(x+h)-8)-(5 x-8)}{h(\sqrt{5(x+h)-8}+\sqrt{5 x-8})} \\
& =\lim _{h \rightarrow 0} \frac{5}{y} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{5 x+5 h-8-5 x+8}}{\frac{h(\sqrt{5(x+h)-8}+\sqrt{5 x-8})}{\text { when we take the unit as } h \rightarrow 0}} \\
R^{\prime}(x) & =\frac{5}{2 \sqrt{5 x-8}}
\end{aligned}
$$

