For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

	Calculating the slope of the line and	
Learning Goal 6.1	 Using the slope to graph a line, and 	
	 Applying the slope to parallel and perpendicular lines. 	

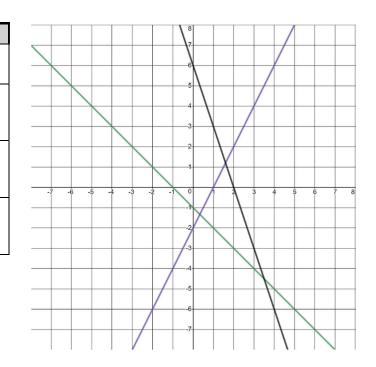
Developing			
1. Classify the slope of each line segment as positive, negative, zero or undefined.			
Prot	ficient		
2. Find the slope of the lines.			
a.	b.		
a. undefined b. negative c. positive -1 $\frac{2}{3}$	i. zero ii. undefined iii. negative -5		
d. undefined e. negative f. zero $-\frac{2}{7}$ 0	iv. positive v. zero vi. positive 3 0 $1/8$		

Proficient		
3. Calculate the slope through the given points.		
a. <i>M</i> (81,53) <i>N</i> (48,36)	b. P(10,13) Q(-14,53)	
9	$-\frac{5}{3}$	
c. A(63,76) B(74,43)	d. M(27,41) N(99,32)	
-3	d. $M(27,41)$ $N(99,32) - \frac{1}{8}$	
e. <i>X</i> (12, -34) <i>Y</i> (47, -20)	f. $J(-53, -19)$ $K(-47, 2)$	
² / ₅	7/2	

Developing					
4. Given the	4. Given the original slope of a line,				
a. State the slope of a line that would be parallel.		 State the slope of a line that would be perpendicular. 			
1	¹ / ₂		$-\frac{3}{5}$		/ ₂
∥ ¹ / ₂	⊥ −2	$\ - \frac{3}{5}$	⊥ ⁵ / ₃	$\ - \frac{3}{2}$	$\perp 2/3$
8	8/7 3 -8		3		3
∥ ⁸ / ₇	$\perp - \frac{7}{8}$	∥ 3	$\perp -1/3$	∥ —8	⊥ ¹ / ₈
	1		0		ined
∥ 1	⊥ −1	0	\perp undefined	undefined	⊥ 0

Proficient		
5. Find the slope of a line that is:		
a. Parallel to a line through the points	b. Perpendicular to a line through the points	
<i>A</i> (63, 76) and <i>B</i> (74, 43)	X(12, -34) and $Y(47, -20)$	
-3	$-\frac{5}{2}$	
P(10, 13) and $Q(-14, 53)$	F(81,53) a2nd G(48,36)	
$-\frac{5}{3}$	$-1/_{9}$	
J(-53, -19) and $K(-47, 2)$	<i>M</i> (27,41) and <i>N</i> (99,32)	
⁷ / ₂	8	
Extending		
the origin and $(15, -3)$	the origin and $(-6, -12)$	
$-\frac{1}{5}$	-1/2	

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.


	Constructing and using the following forms of a linear equation:
Learning Goal 6.2	• Slope – Intercept Form $y = mx + b$,
Learning Goar 6.2	• Slope – Point Form $y - y_1 = m(x - x_1)$, and
	• General Form $Ax + By + C = 0$.

Developing			
1. Write the equation slope-intercept of a line with			
a. a slope of 3 and a <i>y</i> -intercept of 1 y = -3x + 1	b. a slope of $\frac{-1}{3}$ and a <i>y</i> -intercept of 5 $y = \frac{-1}{3}x + 5$		
c. a slope of $\frac{-5}{3}$ and a <i>y</i> -intercept of -4 $y = \frac{-5}{3}x - 4$	d. a slope of $\frac{3}{2}$ and a y-intercept of $(0, -1)$ $y = \frac{3}{2}x - 1$		
e. a slope of $\frac{2}{5}$ and a <i>y</i> -intercept of (0, 8) $y = \frac{2}{5}x + 8$	f. a slope of 1 and a y-intercept of $(0, -7)$ y = x - 7		
2. Write the equation in slope-point of a line with			
a. a slope of 3 through the point (2, 5) y-5 = 3(x-2)	b. a slope of $\frac{-1}{3}$ through the point (-9, 2) $y-2 = -\frac{1}{3}(x+9)$		
c. a slope of $\frac{-5}{3}$ through the point (3, 0)	d. a slope of $\frac{3}{2}$ through the point $(7, -1)$		
$y = -\frac{5}{3}(x-3)$	$y + 1 = \frac{3}{2}(x - 7)$		
e. a slope of $\frac{3}{4}$ through the point $(-10, 3)$ $y-3 = \frac{3}{4}(x+10)$	f. a slope of -1 through the point $(-1, -1)$ y + 1 = -(x + 1)		
g. a slope of $\frac{3}{2}$ through $(6, -2)$	h. a slope of $\frac{-2}{3}$ through $(-3, 1)$		
$y + 2 = \frac{3}{2}(x - 6)$	$y-1 = -\frac{2}{3}(x+3)$		
3. State the slope, $x - and y - intercepts$ of the following equations.			
a. $x + 2y + 10 = 0$	b. $2x - 3y - 6 = 0$		
$m = -\frac{1}{2} \qquad (-10,0) \qquad (0,-5)$	$m = \frac{2}{3}$ (3,0) (0,-2)		
c. $3x + 6y - 12 = 0$	d. $2x - y + 5 = 0$		
$m = -\frac{1}{2}$ (4,0) (0,2)	$m = 2 \qquad (-\frac{5}{2}, 0) \qquad (0, 5)$ f. $5x + 7y + 11 = 0$		
e. $x + 8y - 2 = 0$			
$m = -\frac{1}{8}$ (2,0) (0, $\frac{1}{4}$)	$m = -\frac{5}{7}$ $(-\frac{11}{5}, 0)$ $(0, -\frac{11}{7})$		

Proficient		
4. Determine the equation of each of the following lines. Leave your answer in slope-point form.		
a. Line through points $M(1, -3)$ and $N(7, -21)$ b. Line through points $A(24, 8)$ and $B(4, -3)$		
y + 3 = -3(x - 1)	$y + 7 = \frac{3}{4}(x - 4)$	
c. Line parallel to $y = \frac{-6x}{5} - 1$ and through (10, 2) $y - 2 = -\frac{6}{5}(x - 10)$	d. Line parallel to $y = -x + 2$ and through (8,0) y = -(x - 8)	
e. Line perpendicular to $y = \frac{x}{4} + 5$ and through (10, 2)	f. Line perpendicular to $y = \frac{-2x}{7}$ and through $(0, 2)$	
y - 2 = -4(x - 10)	$y - 2 = \frac{7}{2}x$	

Proficient			
5. Graph the following equations			
a. $y = 2x + 1$	b. $y = \frac{2}{3}x - 4$	c. $y = 3(x+2)$	
http	s://www.desmos.com/calculator/pwlcwo	<u>oosqh</u>	
d. $y = x + 3$	e. $y = \frac{-5x}{4}$	f. $y = -x + 2$	
https://www.desmos.com/calculator/olvb4uq5md			
g. $y = \frac{-6x}{5} - 1$	h. $y-2 = \frac{-5}{4}(x-1)$	i. $y + 1 = \frac{2}{5}(x - 4)$	
https://www.desmos.com/calculator/grqjylc0on			
j. $y - 3 = 2(x + 1)$	k. $y = -\frac{1}{2}(x+3)$	I. $y + 5 = \frac{-4}{3}(x - 1)$	
https://www.desmos.com/calculator/xj76qvlp3h			
m. $x + 2y + 6 = 0$	n. $3x + 6y - 12 = 0$	o. $x + 6y - 6 = 0$	
https://www.desmos.com/calculator/o8vgylfquf			
p. $2x - 3y - 6 = 0$	q. $3x - y + 6 = 0$	r. $5x + 7y + 35 = 0$	
https://www.desmos.com/calculator/zbykdkk0kv			

Proficient			
1. Find the equation o	1. Find the equation of each of the following		
lines. Write the equation in all three forms.			
	y = -x - 1		
Green	y - 3 = -(x + 4)		
	x + y + 1 = 0		
	y = 2x - 2		
Purple	y - 4 = 2(x - 3)		
	2x - y - 2 = 0		
	y = -3x + 6		
Black	y - 3 = -3(x - 1)		
	3x + y - 6 = 0		

Extending		
2. Determine the equation of each of the following lines. Leave your answer in slope-intercept form.		
a. Line with slope $\frac{3}{2}$ through (6, -2)	b. Line with slope $\frac{-2}{3}$ through $(-3, 1)$	
$y = \frac{3}{2}x - 7$	$y = \frac{-2}{3}x - 1$	
c. Line through points $M(1, -3)$ and $N(7, -21)$	d. Line through points $A(24, 8)$ and $B(4, -7)$	
y = -3x	$y = \frac{3}{4}x - 10$	
e. Line parallel to $y = \frac{-6x}{5} - 1$ and through (10, 2)	f. Line parallel to $y = -x + 2$ and through (8,0)	
$y = \frac{-6}{5}x + 14$	y = -x + 8	
g. Line perpendicular to $y = \frac{x}{4} + 5$ and through	h. Line perpendicular to $y = \frac{-2x}{7}$ and through	
(10, 2) $y = -4x + 42$	(0, 2) $y = \frac{7}{2}x + 2$	

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Learning Goal 6.3	Ability to move between all forms of the equation.

Proficient				
 Rewrite the following equations in both slope-point form and general form. THESE ANSWERS ARE EXAMPLES, THERE ARE AN INFINITE NUMBER OF ANSWERS 				
a. $y = 2x + 1$		b. $y = \frac{2}{3}x - 4$		
y-5=2(x-2)	2x - y + 1 = 0	$y + 2 = \frac{2}{3}(x - 3)$	2x - 3y - 12 = 0	
c. $y = x + 3$		d. $y = \frac{-5x}{4}$		
y-2 = x + 1	x - y + 3 = 0	$y-5 = -\frac{5}{4}(x+4)$	5x + 4y = 0	
e. $y = \frac{-6x}{5} - 1$		f. $y = -x + 2$		
$y + 7 = -\frac{6}{5}(x - 5)$ 6	5x + 5y + 5 = 0	y+4 = -(x-6)	x + y - 2 = 0	
Extending				
 Rewrite the following equations in both slope-intercept form and general form. SLOPE-INTERCEPT FORM IS UNIQUE, GENERAL FORM IS NOT 				
a. $y - 3 = 2(x + 1)$		b. $y + 1 = \frac{2}{5}(x - 4)$		
y = 2x + 5	2x - y + 5 = 0	$y = \frac{2}{5}x - \frac{13}{5}$	2x - 5y - 13 = 0	
c. $y = -\frac{1}{2}(x+3)$		d. $y-2 = \frac{-5}{4}(x-1)$		
$y = -\frac{1}{2}x - \frac{3}{2}$	x + 2y + 3 = 0	$y = -\frac{5}{4}x + \frac{13}{4}$	5x + 4y - 13 = 0	
e. $y + 5 = \frac{-4}{3}(x - 1)$		f. $y = 3(x + 2)$		
$y = -\frac{4}{3}x - \frac{11}{3}$	4x + 3y + 11 = 0	y = 3x + 6	3x - y + 6 = 0	

 Rewrite the following equations in both slope-intercept form and slope-point form. SLOPE-INTERCEPT FORM IS UNIQUE, SLPOE-POINT FORM IS NOT 			
a. $x + 2y + 10 = 0$	b. $2x - 3y - 6 = 0$		
$y = -\frac{1}{2}x - 5$ $y + 2 = -\frac{1}{2}(x + 6)$	$y = \frac{2}{3}x - 2$ $y + 4 = \frac{2}{3}(x + 3)$		
c. $3x + 6y - 12 = 0$	d. $2x - y + 5 = 0$		
$y = -\frac{1}{2}x + 2$ $y - 1 = -\frac{1}{2}(x - 2)$	y = 2x + 5 $y - 3 = 2x(x + 1)$		
e. $x + 8y - 2 = 0$	f. $5x + 7y + 11 = 0$		
$y = -\frac{1}{8}x + \frac{1}{4}$ $y - 1 = -\frac{1}{8}(x + 6)$	$y = -\frac{5}{7}x - \frac{11}{7}$ $y + 3 = -\frac{5}{7}(x - 2)$		

Extending				
4. Write the equation in slope-intercept form of a line with				
a. a slope of 3 through the point (2, 5)	b. a slope of $^{-1}\!/_3$ through the point (-9, 2)			
y = 3x - 1	$y = -\frac{x}{3} - 1$			
c. a slope of $^{-5}/_3$ through the point (3, 0)	d. a slope of $\frac{3}{2}$ through the point $(7, -1)$			
$y = -\frac{5}{3}x + 5$	$y = \frac{3}{2}x - \frac{23}{2}$			
e. a slope of $\frac{3}{4}$ through the point $(-10, 3)$	f. a slope of -1 through the point $(-1, -1)$			
$y = \frac{3}{4}x + \frac{21}{2}$	y = -x - 2			