Name:			

Date:

Chapter 3 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Learning Goal 3.1

Perform combined operations with polynomials.

Developing	Proficient
Expand and simplify.	
1. $(x-2)(x+5)$	2. $(3k+4)(k^2-2k-7)$
$x^2 + 3x - 10$	$3k^3 - 2k^2 - 29k - 28$
3. $6v(2v+3)$	4. $(-2t^2 + 4t - 3)(5t^2 - 2t + 1)$
$12v^2 + 18v$	$-10t^4 + 24t^3 - 25t^2 + 10t - 3$
5. $(2n+2)(6n+1)$	6. $(4k-3m)^2$
$12n^2 + 14n + 2$	$16k^2 - 24km + 9m^2$
7. $2(y-3)(3y-1)$	8. $(2v-5w)(3v+2w-7)$
$6y^2 - 20y + 6$	$6v^2 - 10w^2 - 11vw - 14v + 35w$
9. $(2a-1)(8a-5)$	10. $(4p-1)^2$
$16a^2 - 18a + 5$	$16p^2 - 8p + 1$
11. $(5v - 7w)(5v + 7w)$	12. $2(2a+1)(6a^2-a+2)$
$25v^2 - 49w^2$	$24a^4 + 8a^2 + 6a + 4$
13. $(m+6)(2m-3)$	14. $4(7r^2 - 6r - 6)(r - 2)$
$2m^2 + 9m - 18$	$28r^3 - 80r^2 + 24r + 48$
15. $(9-y)(2+3y)$	16. $(6x^2 - 6x - 5)(7x^2 + 6x - 5)$
$-3y^2 + 25y + 18$	$42x^4 - 6x^3 - 101x^2 + 25$

Extending

Expand and simplify.

1.
$$(4m+1)(3m-2) + 2(2m-1)(-3m+4)$$

$$17m - 10$$

$$\begin{array}{c}
17m - 10 \\
2. & (6h + k - 2)(2h - 3) - (4h - 3k)^2
\end{array}$$

$$-4h^2 - 9k^2 + 26hk - 22h - 3k + 6$$

3.
$$(x - y + 1)^3$$

2.
$$(6h + k - 2)(2h - 3) - (4h - 3k)^2$$

 $-4h^2 - 9k^2 + 26hk - 22h - 3k + 6$
3. $(x - y + 1)^3$
 $x^3 - y^3 + 3xy^2 - 3x^2y + 3x^2 + 3y^2 - 6xy + 3x - 3y + 1$
4. $(3b + 4)(b - 5)(2b + 8)$

4.
$$(3b+4)(b-5)(2b+8)$$

 $6b^3 + 2b^2 - 128b - 160$
5. $(2q-3)(2q+3)^2$

$$6b^3 + 2b^2 - 128b - 160$$

5.
$$(2q-3)(2q+3)^2$$

$$8q^3 + 12q^2 - 18q - 18$$

5.
$$(2q-3)(2q+3)^2$$

 $8q^3 + 12q^2 - 18q - 18$
6. $(2a+1)(4a-3) - (a-2)^2$

$$7a^2 + 2a - 7$$

Name:	Date:

Chapter 3 Review

Name:			
Mamei			
manic.			

Date: _____

Chapter 3 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

	Given a number, a set of numbers or a polynomial expression, identify the prime factorization of each element and use it to find the
Learning Cool 2.2	• GCF,
Learning Goal 3.2	• LCM,
	 perfect squares or cubes and/or
	 factored form.

Developing			
Write each for the following numbers as a product		Prime factor each of the following numbers and use	
of primes and then find the Greatest Common		the prime factors to justify whether each is a perfect	
Factor (GCF) and Lowest Common Multiple (LCN	∕ I).	square, perfect cube, neither or both.	
18, 54		1728	
GCF(18, 54) = 18 LCM(18, 54) = 54		Perfect Cube	
22, 46		2025	
GCF(22, 46) = 2 LCM(22, 46) = 506		Perfect Square	
15, 36		5556	
GCF(15, 36) = 3 LCM(15, 36) = 180		Neither	
12, 40		4096	
GCF(12, 40) = 4 LCM(12, 40) = 120		Perfect Square, Perfect Cube	
	Devel	oping	
Identify the Greatest Common Factor (GCF) of	For e	each arrangement of algebra tiles, write the	
the following terms:	polyr	nomial they represent and identify its factors.	
1. $4x,70$ GCF(4x,70) = 2	2	3x + 12 = 3(x + 4)	
3. $12ab^2$, $36a^2b$ $GCF(12ab^2, 36a^2b) = 12ab$	4	6x + 9 = 3(2x + 3)	
5. $9mn, 33m^2n^3$ $GCF(9mn, 33m^2n^3) = 3mn$	6	4x + 12 = 2(2x + 6)	
7. $15x^4y$, $25x^3y^3$ $GCF(15x^4y, 25x^3y^3) = 5x^3y$	8	4x + 12 = 4(x+3)	

Name:	Date:

Chapter 3 Review

Proficient		
1. Write each for the foll	owing numbers as a	2. What is the smallest number you would need to
product of primes and	I then find the Greatest	multiply the given number by in order to create
Common Factor (GCF)	and Lowest Common	a larger number that is
Multiple (LCM).		
GCF(90, 225, 405) = 45	LCM(90, 225, 405) =	A perfect square: $2^3 \times 3^2 \times 5$
	$2 \times 3^4 \times 5^2$	2 × 5
GCF(78, 312, 507) = 39	LCM(78, 312, 507) =	A perfect square: $2^4 \times 5^3 \times 7^4$
	$2^3 \times 3 \times 13^2$	5
GCF(108, 198, 288) = 18	LCM(108, 198, 288) =	A perfect cube: $2^3 \times 3^2 \times 5$
	$2^5 \times 3^3 \times 11$	3×5^2
GCF(208, 416, 512) = 16	LCM(208, 416, 512) =	A perfect cube: $2^4 \times 5^3 \times 7^4$
	$2^9 \times 13$	$2^2 \times 7^2$

- 3. Determine the side length of
 - a. a square with area $121x^4y^2$ square units.

 $11x^2y$

b. a cube with volume $64x^6y^3$ cubic units.

$$4x^2y$$

4. For each of the following polynomials, identify the GCF and then use it to factor the polynomial.

a. $12ab^2 + 36a^2b = 12ab(b+3a)$	b. $4x - 70 = 2(2x - 35)$
c. $9mn - 33m^2n^3 = 3mn(3 - 11mn^2)$	d. $34 - 8g = 2(17 - 4g)$
e. $6 + 24k = 6(1 + 4k)$	f. $25x^3y^3 - 15x^4y = 5x^3y(5y^2 - 3x)$
g. $q^5 - q^2 = q^2(q^3 - 1)$	h. $162v^4w^2 - 36v^2w^4 = 18v^2w^2(9v^4 - 2w^2)$

Extending

- 1. What is the smallest number you would need to multiply the given number by in order to create a larger number that is both a perfect square and a perfect cube?
 - a. $(2^4 \times 5^3 \times 7^4) \times (2^2 \times 5^3 \times 7^2)$
 - b. $(2^3 \times 3^2 \times 5) \times (2^3 \times 3^4 \times 5^5)$
- 2. For each of the following polynomials, identify the GCF and then use it to factor the polynomial.
 - a. $26xyz + 4x^2yz^2 8z = 2z(13xy + 2x^2yz 4)$
 - b. $78a^3bc^6 312ab^2c^3 + 507a^5bc^3 = 39abc^3(2a^2c^3 8b + 13a^4)$
 - c. $405f^2g^2h^2 90fg^2h^3 + 225f^3g^4h^2 = 45fg^2h^2(9f 2h + 5f^2g^2)$
 - d. $512 m^5 n^4 p^2 + 208 m^2 n^4 p^5 416 m^3 n^3 p^3 = 16 m^2 n^3 p^2 (32 m^3 n + 13 n p^3 26 m p)$

Extending

- 1. Gillian says that she knows that 61 is a prime number because she tried dividing 61 by all the natural numbers up to and including 7, and none of them was a factor. Do you agree with Gillian? Explain.
- 2. A bar of soap has the shape of a rectangular prism that measures 10cm by 6 cm by 3 cm. What is the edge length of the smallest cube that could be filled with these soap bars? 30 cm

	Chapter 3 Review
3. A cube has a volume of 2197 m ³ How many cans of paint are nee	. Its surface is to be painted. Each can of paint covers about 40 m ² . ded? Justify your answer.
	26 cans
4. Suppose n is an integer. Is n^2 —	n always an integer? Justify your answer.
	Yes

Date: _____

Name: _____

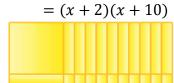
Name: _____

Date:

Chapter 3 Review

For each type of question, the achievement level is indicated. Showing work is an important strategy in communicating your knowledge and ideas so please be thorough.

Learning Goal 3.3


Factor trinomials of the form $ax^2 + bx + c$.

Developing		
Factor the following trinomials into a product of binor	mials.	
1. $x^2 + 4x + 4 = (x+2)^2$	2. $m^2 + 14m + 24 = (m+12)(m+2)$	
3. $a^2 + 8a + 12 = (a + 6)(a + 2)$	4. $b^2 + 7b + 12 = (b+3)(b+4)$	
5. $c^2 + 13c + 12 = (c + 12)(c + 1)$	6. $d^2 + 8d + 15 = (d+5)(d+3)$	
7. $f^2 + 9f + 18 = (f+6)(f+3)$	8. $g^2 + 9g + 20 = (g+5)(g+4)$	
9. $h^2 + 7h + 6 = (h+6)(h+1)$	10. $k^2 + 5k + 4 = (k+4)(k+1)$	
$11. a^2 + 12a + 36 = (a+6)^2$	12. $k^2 + 19k + 18 = (k+18)(k+1)$	

Write the area statement shown by the algebra tiles as both a trinomial and a product of 2 binomials.

1. $x^2 + 12x + 20$

$$=(x+2)(x+10)$$

2. $x^2 + 9x + 18$

$$=(x+3)(x+6)$$

3. $x^2 + 10x + 25 = (x + 5)^2$

Proficient		
Factor the following trinomials into a product of binomials.		
1. $z^2 + z - 6 = (z+3)(z-2)$	2. $b^2 - 7b + 12 = (b - 3)(b - 4)$	
3. $x^2 - 7x - 18 = (x - 9)(x + 2)$	4. $p^2 - 5p - 14 = (p - 7)(p + 2)$	
5. $m^2 - 9m + 8 = (m - 8)(m - 1)$	6. $q^2 - 16q + 63 = (q - 7)(q - 9)$	
7. $24n - n^2 - 25 = (25 - n)(n + 1)$	8. $a^2 + 11a - 80 = (a + 16)(a - 5)$	
9. $20 + 8n - n^2 = (10 - n)(n + 2)$	10. $11p - p^2 - 24 = (8 - p)(p - 3)$	
Factor the following polynomials into a product of bin	omials.	
1. $4g^2 + 11g + 6 = (4g + 3)(g + 2)$	$2. \ \ 36x^2 + 12x + 1 = (6x + 1)^2$	
3. $6m^2 - 7m - 10 = (6m + 5)(m - 2)$	4. $16 - 56z + 49z^2 = (7z - 4)^2$	
5. $8p^2 - 18p - 5 = (4p + 1)(2p - 5)$	6. $81m^2 - 49 = (9m + 7)(9m - 7)$	
7. $3n^2 - 8n + 4 = (3n - 2)(n - 2)$	8. $49a^2 - 100 = (7a + 10)(7a - 10)$	
9. $6y^2 + 5y - 6 = (3y - 2)(2y + 3)$	$10. \ 1 + 2b + b^2 = (1+b)^2$	
11. $4a^2 - 17a + 4 = (4a - 1)(a - 4)$	12. $9 - r^2 = (3 - r)(r + 3)$	
$13. 3r^2 - 2r - 5 = (3r - 5)(r + 1)$	$14. k^4 - 100 = (k^2 + 10)(k^2 - 10)$	
$15. 5x^2 + 19x + 12 = (5x + 4)(x + 3)$	$16. 4t^2 - 4t + 1 = (2t - 1)^2$	
Factor the following binomials.		
1. $x^2 - 25 = (x - 5)(x + 5)$	2. $a^4 - 4 = (a^2 + 2)(a^2 - 2)$	
3. $81 - a^2 = (9 - a)(9 + a)$	4. $100 - b^6 = (10 - b^3)(10 + b^3)$	
5. $169 - q^{10} = (13 - q^5)(13 + q^5)$	6. $m^2 - 49 = (m+7)(m-7)$	

Name:			
maine.			

Date: _____

Chapter 3 Review

7. $144 - n^8 = (12 - n^4)(12 + n^4)$	8. $b^{20} - 4 = (b^{10} - 2)(b^{10} + 2)$			
Extending				
Without a calculator, what values of a could you use to complete the trinomial (note that a can be either a				
positive or a negative value).				
1. $x^2 + ax + 18$	2. $y^2 + ay + 24$			
$a = \pm 19, \pm 11, \pm 9$	$a = \pm 25, \pm 14, \pm 11, \pm 10$			
3. $m^2 + am - 16$	4. $n^2 + an - 20$			
$a = \pm 15, \pm 6, 0$	±19, ±8, ±1			
Factor the following trinomials into a product of binomials.				
1. $24h^2 - 20h - 24 = 4(3h + 2)(2h - 3)$	2. $162v^4 - 2w^4 = 2(9v^2 - w^2)(9v^2 + w^2)$			
3. $10x^2 + 80x + 120 = 10(x+2)(x+6)$	4. $4y^2 - 20y - 56 = 4(y - 7)(y + 2)$			
5. $-3m^2 - 18m - 24 = -3(m+2)(m+4)$	6. $-5n^2 + 40n - 35 = -5(n-7)(n-1)$			
7. $21 + 66k + 9k^2 = 3(3k + 1)(k + 7)$	8. $10n^2 + 100n + 250 = 10(n+5)^2$			
9. $2x^2 + 5xy + 2y^2 = (2x + y)(x + 2y)$	$10. \ 10p^3 - 1960p = 10p(p+14)(p-14)$			
$11. \ 16b^2 + 60b - 100 = 4(4b - 5)(b + 5)$	12. $343b^2 - 7b^4 = 7b^2(7-b)(7+b)$			
$13. 4b^2 - 35ab + 49a^2 = (4b - 7a)(b - 7a)$	$14.98n^2 - 200 = 2(7n - 10)(7n + 10)$			
15. $7q^3r^2 + 53q^2r^2 + 28qr^2 = qr^2(7q+4)(q+7)$	$16.81x^4 - 900x^2 = 9x^2(3x - 10)(3x + 10)$			
$17. 9 - 3p - 2p^2 = (3 - 2p)(p + 3)$	$18.\ 100m^2 + 180m + 81 = (10m + 9)^2$			
$19. \ 2w^2v^2 + 11wv + 5 = (2vw + 1)(vw + 5)$	$20. \ 400v^2w^4 - 36v^4 = 4v^2(10w^2 - 3)(10w^2 + 3)$			
Factor the following binomials.				
1. $4m^2 - 25 = (2m + 5)(2m - 5)$	2. $125 - 5r^2 = 5(5 - r)(5 + r)$			
3. $121p^6 - 25q^4 = (11p^3 + 5q^2)(11p^3 - 5q^2)$	4. $4z^2 - 64 = 4(z+4)(z-4)$			
5. $900a^2 - 81 = (30a + 9)(30a - 9)$	6. $9s^8 - 4t^2 = (3s^4 + 2t)(3s^4 - 2t)$			

Extending

1. Find all the trinomials that begin with $9m^2$, end with + 16, and can be factored.

$$9m^2 \pm 145m + 16$$

$$9m^2 \pm 74m + 16$$

$$9m^2 \pm 51m + 16$$

$$9m^2 \pm 40m + 16$$

$$9m^2 \pm 30m + 16$$

$$9m^2\pm 26m+16$$

$$9m^2 \pm 25 m + 16$$

$$9m^2 \pm 24m + 16$$