7.4 - SOLVING PROBLEMS INVOLVING PRISMS \& CYLINDERS

of prisms and cylinder

General Formula for Volume $=$ area of base \times height

$$
V=A \times H
$$

Cylinder

$V=\pi r^{2} H$

Rectangular Prism

$V=l w H$

Triangular
Prism

$V=\frac{1}{2} 6 h H$
height of triangle

Example 1:

Marcus is making a display of packages of Prism Chocolates in his candy shop. He will stack 64 packages to form a shape.
What is the volume of the display?

$$
\begin{array}{rlrl}
V & =\frac{1}{2} b h H & 280 \mathrm{~cm}^{3} \times 64 \\
& =\frac{1}{2}(5.6)(5)(20) & =17920 \mathrm{~cm}^{3} \\
& =280 \mathrm{~cm}^{3} &
\end{array}
$$

Example 2:

A cylinder with a radius of 0.6 m and a height of 15 m needs to be replaced with a cylinder of equal volume. However, the new cylinder has a radius of 0.5 m .
How high must the new cylinder be?

Example 3:
Jim has designed rectangular culverts to carry water under a new highway. He estimates that the distance under the highway is 45 m . Determine the volume of concrete he needs to make the required number of culvert pieces. Give your answer to the nearest tenth of a cubic metre.

1. \# of pieces needed:

$$
45 m \div 15 m=3 \text { pieces }
$$

2. concrete block

$$
\begin{aligned}
V & =l w h \\
& =2 \times 2 \times 15=60 \mathrm{~m}^{3}
\end{aligned}
$$

3. opening

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi(0.5)^{2}(15) \doteq 11.78 \mathrm{~m}^{3}
\end{aligned}
$$

4. difference (concrete needed)

 $60-11.78=48.22 \mathrm{~m}^{3} \quad$ cylinder5 total needed
$48.22 \times 3=144.66 \mathrm{~m}^{3}$

Assignment: p. 273 \#4-8, 10, 11, 13, 16

